
Automatic semantic tagging of numerical expressions
for supporting speech synthesis

or How to tell a third from a day in March

Eira Monstad

Master thesis in computational linguistics

February 2006

Institutt for Lingvistikk og Litteraturvitenskap

Universitetet i Bergen

Table of Contents
1 Introduction..6

1.1 Motivation..6
1.2 What I will do..6

2 Background..8
2.1 Numerals..8

2.1.1 Definitions..8
2.1.2 What are numerals?..8
2.1.3 The problem...9

2.2 Markup languages..10
2.2.1 Standards and standards organizations...11
2.2.2 XML...12
2.2.3 SSML...13
2.2.4 say-as..13

3 Defining the semantic categories...16
3.1 Formats defined in SSML..16

3.1.1 Defined values..16
3.1.2 Overview..20

3.2 Defining new values..20
3.3 Corpora...21
3.4 Values defined in the Note...22

3.4.1 Ordinal..23
3.4.2 Cardinal..24
3.4.3 Time ..25
3.4.4 Date..26
3.4.5 Character string..27
3.4.6 Telephone...28

3.5 Categories found in corpora, but not covered in the Note...................................29
3.5.1 Date..29
3.5.2 Range...30
3.5.3 Fraction..32
3.5.4 Ratio...34
3.5.5 Index...35
3.5.6 Mathematical expressions..36
3.5.7 Score...36
3.5.8 Guns...37
3.5.9 Issue numbers...37
3.5.10 Biblical references..37
3.5.11 Summary..38

4 Tagging..39
4.1 Introduction..39
4.2 Corpus data..40
4.3 Preprocessing...40
4.4 Syntactic tagging..41
4.5 Semantic tagging..42

5 Memory based learning...45
5.1 Introduction..45

2

5.2 About MBL..46
5.2.1 Basics...46
5.2.2 Memory based learning in language engineering applications....................47
5.2.3 Supporting linguistic theories with memory learning results......................48

5.3 Data..49
5.3.1 Encoding..50

5.4 Tests...53
5.5 Results..54

5.5.1 Averages..54
5.5.2 Weighting...56
5.5.3 Confusion matrix..57
5.5.4 Specific errors..62

5.6 Summary..63
6 Discussion and conclusion...64

6.1 Discussion..64
6.2 Further work...66
6.3 Conclusion...67

7 References..68
7.1 Publications..68
7.2 Web sites..69

All scripts, data material and MBL output files are available at http://epistel.no/master/

3

http://epistel.no/master/

Foreword

I have been interested in web development since the birth of the commercially available
Internet. I see the Web as a democratic resource, promoting global exchange of
information. As such, accessibility is very important, both in terms of
internationalization – availability for users of all languages – and in terms of being
usable for people with various disabilities.

In my work, I hope to improve the situation for both groups. Speech Synthesis Markup
Language, SSML, is a markup language designed to make the Web more accessible for
vision impaired users and other users who may benefit from speech synthesis. I will try
to enhance the benefit for users of all languages, not just English speakers.

Thanks to:

My supervisor, Koenraad de Smedt, for professional, practical, and moral support

Gisle Andersen, for his help with access to corpus data and syntactical tagging

Tim Altman and Ian Hickson, for proof reading

My fellow students, for invaluable moral support

Helge Dyvik, for helping me get started

Kolbjørn Slethei, for suggesting SSML as an interesting topic to work on

Dag Bakke, for endless encouragement

4

Abstract

The topic for this thesis is the semantic categorization of numerical expressions in
running text in the context of speech synthesis. It is a problem for speech synthesis
engines to determine whether 1/2 is a date, a fraction or something else. If this is not
known, the number cannot be spoken correctly.

Using corpus resources, this thesis identifies a number of semantic categories
that are important to distinguish between for the purpose of speech synthesis. The
categories are defined within the framework of Speech Synthesis Markup Language
(SSML), a markup language intended to improve the quality of input to speech
synthesis.

The categories are used as classifiers in a syntactically tagged training corpus
for memory-based learning. The learning process achieves up to 95% accuracy in
determining the correct category for a numerical expression. The memory based
learning approach appears promising as a method for automatically improving the
quality of speech synthesis, though work remains in subcategorization of the numerical
expressions.

5

1 Introduction

1.1 Motivation

Speech synthesis is an invaluable tool for certain population groups, particularly those
who are blind or weak-sighted. It is also increasingly popular in applications for a
broader audience, such as automated messages that are given over a phone or speaker
and GPS driving instructions – in short, any situation where there is no screen to read
from or where the recipient needs to keep his eyes somewhere else.

Disambiguation is an important part of speech synthesis. In order to read the
text correctly, the synthesis engine must distinguish between the senses of homographs
that are not homophones. It would (in most cases) be silly if the speaker explained how
to re-string the băs1 or prepare a delicious meal from a b sā 2. While English does not
have many common words in this class, they occur more frequently in other languages.
One disambiguation problem that is present in all languages, though, is the issue of
how to handle numbers.

With ten digits we express a vast number of different meanings. Take the
sequence 1/2. Is it a fraction? A date? An American date, or a European date? The first
object in a set of two? A choice of one or two objects? The list goes on.

Words often do not have to be disambiguated at all. Letters and combinations of
letters are mapped to sounds. Even if you have never heard of a "grulzag" before, you
can probably pronounce the word just from reading it, and the machine does not have to
know whether "rose" is a flower or something Jesus did after he died.

Numbers are not mapped to sounds in such a straightforward way. First, there is
the fact that how a number is read depends on where in the sequence it is. 5 is five, but
50 is fifty, and to make it even more complicated, 15 turns it all around and becomes
fifteen3. This is for all practical purposes a solved problem. But consider the sequence
"January 5" or even "George 5". "Five" is suddenly not good enough, we want "fifth".
And if we widen it even more, to "January 5 1995", "one thousand nine hundred
ninetyfive" doesn't cut it. To make any sense it must be read as "nineteen ninetyfive".

So how do we teach the machine how to tell a third from a day in March? That
is the topic for this project.

1.2 What I will do

The markup language SSML, Speech Synthesis Markup Language, provides a set of
semantic categories for numerical expressions. In this project I will use corpus
resources to find empirical support for each of these categories, as well as empirical

1 Bass, a fish
2 Bass, a musical instrument
3 For more about this, see Gyri Losnegaard – Syntaksen i talluttrykk (Master thesis, 2005)

6

evidence for whether their definitions need to be changed to support international
formats, and whether additional categories are necessary to cover important formats in
the target domain.

I will then proceed to investigate how a text can be automatically tagged using
these values. Some of the factors that may affect the accuracy are the preprocessing of
the input text (syntactic tagging, breaking up the string in smaller components) and the
existence of specific words – trigger words – in the context. I will look at how these
factors affect automatic tagging, and how an optimal combination of ease, efficiency
and accuracy can be obtained.

7

2 Background

2.1 Numerals

2.1.1 Definitions

The term "number" has a large number(!) of senses. The simplest one, perhaps, is the
mathematical sense: "one of a series of symbols of unique meaning in a fixed order that
can be derived by counting". The term is also used to denote the words or symbols
referring to numbers – also called numerals. And there is the adjective numeric or
numerical, "Of or relating to a number or series of numbers".4

In most of this paper, I will use the term "number" in the loose sense, denoting
both the abstract mathematical idea of numbers, and the words and symbols used to
name them. Where the distinction is important, I will use the more specific term
"numeral" to refer to the words and symbols used to name the numbers.

By "numerical expression", I refer to any expression composed of a series of
numbers and separator characters – including, but not limited to integers, dates,
fractions etc.

2.1.2 What are numerals?

Heike Wiese (1997) says:

"The expression of numbers through numerals (and other linguistic means)
is a universal characteristic of natural language, a circumstance that
indicates the great importance of number concepts for human thinking. The
notion of the number, which is the root of the perception of discrete objects,
creates the notion of space – the continuous unity – a basic means of
grasping reality."

Clearly, numbers are integral to how we conceptualize the world. Like nouns are used
to carve up reality in types of objects, numerals are used to carve up reality in discrete
items. In this sense, they have much in common with adjectives – they let us
distinguish separate objects. Like nouns, numerals can not only count physical items,
but also abstract notions, such as points in time. Hurford (1987) argues that "numerals
are primarily adjectives, and secondarily nouns".

Normally we think of numerals in a cardinal sense – we think of them as
numbers, so to speak (Wiese, 2003). Cardinal numerals are ordered – four apples are
more than three apples, 22.12.2005 is two days earlier than 24.12.2005.

Numerals can also be used nominally. Typical nominal uses of numerals are

4 The American Heritage Dictionary of the English Language

8

phone numbers or bus lines. In these contexts, the numeric value of the numeral has no
meaning. Bus 22 is not inherently any larger or later than bus 21, and they might just as
well have been named after their destination.

As a side note, however, the distinction is not as sharp as it may seem. Think of
a bank account number. On first sight, it is clearly nominal. If my account number is
1234.55.67899 and yours is 1234.55.67788, it doesn't make sense to order them and say
that my account is larger than yours. It is simply a handy way to give each account a
unique name, and it might seem that the banking community could just as well have
chosen letters or other symbols. But the choice of numerals is not entirely arbitrary, and
this is where the cross-over between numeral and cardinal occurs. Bank account
numbers, KID numbers5 and similar unique names used in banking have checksums.
Checksums are arithmetic operations that are carried out on parts of the number. The
result is attached, usually to the end of the number. When the number is used, the
arithmetic operations are run again and matched, to lessen the risk of having a typo
cause you to pay your rent to a complete stranger.

Normally, it would not make sense to do arithmetic with a nominal expression.
But it does not make sense to think of a numeral as cardinal if its numeric value cannot
be ordered related to other numerals in the same set. The distinction is not very
important for the task at hand, so I will not investigate it in more detail here.

Grammatically, numerals in the cardinal sense are usually treated as quantifiers.
I only look at a subset of the quantifiers – namely, those expressed by numbers rather
than by adjectives such as "many" and "some", for reasons outlined in the next section.

Numerals used nominally have much in common with proper names – in many
ways, they are proper names. In the words of McDonald (1996), understanding proper
names "... is central to the analysis of the extended, unrestricted texts that have become
the focus of research in the natural language processing community". And indeed,
much work has been done on identifying and categorizing proper names over the last
ten years. It is not unlikely that much of the work done here is also relevant for
recognizing and understanding numbers.

It should not be doubted that numerals deserve the same amount of attention as
the proper names have gotten, for exactly the same reasons. Understanding the number
is important for understanding the text as a whole. Because numbers, written with
different symbols than all other text, are so simple to recognize, it is easy to imagine
that the task of understanding them is equally simple. This, we shall see, is not the case.

2.1.3 The problem

Magnus Olsson writes about dates in Swedish6, explaining that years are grouped:
"Swedes realize e.g. the year 1845 as artonhundrafyrtiofem "eighteen-
hundredfortyfive" and not as (ett)tusenåttahundrefyrtiofem
"(one)thousandeighthundredfortyfive"." Norwegian and English treat years similarly, as
"atten førtifem" or "eighteen fortyfive". For a speech synthesis engine, it is vital to
know whether 1845 is a date or not in order to choose between the the two
pronunciations "eighteen fortyfive" and "one thousand eight hundred fortyfive".

5 A number that identifies who a bill is paid by and which bill was paid, so that the payment can be
registered automatically in the receiver's computer system

6 Magnus Olsson, Swedish numerals in an international perspective (1997), p134

9

Hurford (1987) says:

"Numeral systems are in clear ways well integrated with the languages in
which they are embedded. In the stream of speech, numerals receive no
special attention, making use of the same phonological units (say
phonemes) and processes (phonological rules) as the rest of the language."

He goes on to mention that "The alternative notation can be seen as an efficient
shorthand for the longer forms, although it is no doubt significant that such shorthands
are especially common for numeral expressions."

Hurford recognizes that the existence of alternative notation is significant, but to
him it is not a very interesting point. To me, however, it is at the core of the problem. In
the context of speech synthesis, numerals expressed in letters pose no different
difficulties than any other word.

I will look at numerals expressed symbolically, as a series of digits and
separator characters – or, in Hurford's words, alternative notation. The alternative
notation is not uniquely mapped to a semantic category nor to a phonetical realization.
Thus, in order to present the text correctly to the listener, this mapping –
disambiguation – must be done by the speech synthesis engine or by preprocessing its
input. This is what I will attempt to do – specifically, I will try to do the first step of the
mapping, from notation to semantic category. The step from semantics to phonology is
highly language- and implementation-dependent and is best left to the particular speech
synthesis engine.

2.2 Markup languages

"Marking up" a text means to include information about the text interleaved with the
text itself. This can be any kind of information, for example about what the text should
look like (), or about structure
(<title>Current Issues in Linguistic Theory</title>). A
markup language is the set of elements and rules for writing and reading a document
marked up with that language. The early history of markup languages is unclear, but it
is known to have been suggested at least as far back as the late 1960s.7

The purpose of using markup languages is to ease sharing of documents across
multiple programs and platforms. With Tim Berners-Lee's8 invention of the World
Wide Web (WWW or "the Web") and HTML9 (HyperText Markup Language), markup
got a boost. The idea of the WWW was to give anyone, anywhere, with any kind of
computer and connection to the Internet, access to the same information. That meant
that infomation needed to be coded in a way that would be readable on any computer.
(Tim Berners-Lee, 199810)

7 Markup language: http://en.wikipedia.org/wiki/Markup_language
8 Time 100: Tim Berners-Lee: http://www.time.com/time/time100/scientist/profile/bernerslee.html
9 HyperText Markup Language (HTML) Home Page http://www.w3.org/MarkUp/
10 The World Wide Web: A very short personal history: http://www.w3.org/People/Berners-

10

http://www.w3.org/People/Berners-Lee/ShortHistory
http://www.w3.org/People/Berners-Lee/ShortHistory
http://www.w3.org/MarkUp/
http://www.time.com/time/time100/scientist/profile/bernerslee.html
http://en.wikipedia.org/wiki/Markup_language

Today, the most widely known markup language is still HTML, though the
W3C's11 XML12 (eXtensible Markup Language) is gaining popularity. HTML is a
simple language designed to present documents in a human-readable way. XML, as the
name suggests, is much more than that. In fact, it is not really a language itself, but a
meta-language, a framework for creating markup languages. It provides a set of rules
about structure and syntax which all languages based on XML must follow.

Both HTML and XML are derived from the SGML13 (Standard Generalized
Markup Language, ISO887914) framework, which itself was based on IBM's
Generalized Markup Language15. Because SGML is extremely complex, there was a
need for a simpler format for small-scale use. HTML achieved this for the purpose of
web documents16, but was not flexible enough to replace SGML as a general
framework. XML took this role, and has now almost replaced SGML. It is being used
not only for sharing content on the Web, but also for storing settings and data in a large
number of applications. One example is Microsoft Office, which will use XML as the
default document format from version 1217.

2.2.1 Standards and standards organizations

The World Wide Web Consortium, commonly referred to as the W3C or just the W3, is
a consortium of companies and other organizations who have joined together to develop
standards related to the Web. Standards are developed by Working Groups, which any
member organization can join, provided they are willing to spend the time and money
required. Working Groups can also have Invited Experts.

W3 standards are referred to as Recommendations18. During the development
process, the responsible working group has to respond to all comments to the proposed
recommendation. A "note" is a published working document, which may be changed by
the Working Group that owns it at any time. There is no obligation for the Working
Group to respond to or in any way deal with comments to a note. As such, it should be
viewed as a best practice guide rather than a standard.

IETF is another standards body that deals with Internet-related standards, not
necessarily confined to the WWW. One of their standards has become very important in
the development of other standards, namely RFC 211919 which defines the use of the
terms "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL". In
the sections in this document where I suggest normative additions or changes to the
SSML 1.0 say-as attribute values note, I will adhere to the use of these terms as defined

Lee/ShortHistory
11 World Wide Web Consortium: http://www.w3.org/
12 Extensible Markup Language (XML): http://www.w3.org/XML/
13 Standard Generalized Markup Language: http://en.wikipedia.org/wiki/SGML
14 Reference: ISO8879: http://www.w3.org/TR/html4/references.html
15 Generalized Markup Language: http://en.wikipedia.org/wiki/Generalized_Markup_Language
16 On SGML and HTML: http://www.w3.org/TR/html4/intro/sgmltut.html
17 Microsoft Office Open XML Formats Overview:

http://www.microsoft.com/office/preview/developers/fileoverview.mspx
18 Recommendation Track Process Maturity Levels: http://www.w3.org/2004/02/Process-

20040205/tr.html#maturity-levels
19 Key words for use in RFCs to Indicate Requirement Levels: http://www.ietf.org/rfc/rfc2119.txt

11

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/2004/02/Process-20040205/tr.html#maturity-levels
http://www.w3.org/2004/02/Process-20040205/tr.html#maturity-levels
http://www.microsoft.com/office/preview/developers/fileoverview.mspx
http://www.microsoft.com/office/preview/developers/fileoverview.mspx
http://www.w3.org/TR/html4/intro/sgmltut.html
http://en.wikipedia.org/wiki/Generalized_Markup_Language
http://www.w3.org/TR/html4/references.html
http://en.wikipedia.org/wiki/SGML
http://www.w3.org/XML/
http://www.w3.org/
http://www.w3.org/People/Berners-Lee/ShortHistory

in RFC 2119.

2.2.2 XML

XML is a strictly hierarchical markup language. Documents are built using elements,
attributes and text nodes. A document consists of an optional prolog20 and one root
element, which contains every other element and text.21

Elements are written as tags enclosed in angle brackets. An element named
"title" would be written as <title>. Each opened element has to be closed with a
forward slash, either with a separate closing tag: <title></title> or by including
the slash at the end of the tag: <title/>.

An element can be empty, or it can contain other elements and/or text:
<author>Written by <name>Eira</name></author>.

Elements can have attributes with values:

<address location="home">

 <name part="first">Eira</name>

 <name part="middle"/>

 <name part="last">Monstad</name>

</address>

In the above example, address is an element, location is an attribute, and home
is an attribute value. The words "Eira" and "Monstad" are the data, while the rest is the
markup.

The smallest possible XML document contains nothing but the root element,
which may be empty:

<addressbook/>

XML doesn't define the names of the elements or attributes. XML is only a framework,
on which markup languages can be built. Those languages define a set of allowed or
required elements and attributes, and rules about which elements can contain which

20 Headers describing the document or linking to external resources
21 Erik T. Ray, Learning XML (2003)

12

other elements, which attributes apply to which elements, and the values the attributes
can have.

2.2.3 SSML

SSML, Speech Synthesis Markup Language22, is an XML-based markup language
developed by the W3C. It is part of a larger set of voice-related markup languages, all
based on XML.

SSML aims to improve the quality of synthesized content. Like the idea behind
the Web itself, cross-platform and cross-implementation compatibility is one of the
main aims. Traditionally, each speech synthesis application has had its own way of
doing things, and authors have had little or no control over the resulting output. By
providing "authors of synthesizable content a standard way to control aspects of speech
such as pronunciation, volume, pitch, rate, etc. across different synthesis-capable
platforms"23, there is hope of higher quality and accuracy in speech synthesis. Authors
can now help with disambiguation, provide pronunciation of words that don't follow
common pronunciation rules, specify that a certain word or sentence is in a different
language than the rest of the text, that a specific word should be pronounced in a special
style, slower or with stress, and so on.

SSML is intended to be language independent. However, current versions of the
specification does not satisfactorily cater for languages that fall outside the Western
European language group. Work is being done to overcome this problem in future
versions. In November 2005, a workshop was held on internationalizing SSML24.

2.2.4 say-as

One of the controls offered by SSML is the element say-as25, which tells the speech
synthesis processor something about the semantics of the text it contains. A use case for
this is to be able to distinguish between a date (10.08.05, August 10 2005) and a time
of day (10.08.05, eight minutes and five seconds past ten)26. You can also specify the
format in more detail, such as distinguishing between 10.08.05 meaning August 10
2005 or October 8 2005. The date August 10 2005 can be marked up like below, where
the semantic category is "date" and the date is composed of three fields: day, month and
year in that order, "dmy":

<say-as interpret-as="date" format="dmy">10.08.05</say-as>

22 Speech Synthesis Markup Language (SSML) Version 1.0: http://www.w3.org/TR/speech-synthesis/
23 SSML 1.0 (Abstract)
24 W3C Workshop on Internationalizing the Speech Synthesis Markup Language:

http://www.w3.org/2005/08/SSML/ssml-workshop-agenda.html
25 SSML 1.0 S3.1.8
26 In Norwegian, the customary separator character in times is a dot, not a colon as in English

13

http://www.w3.org/2005/08/SSML/ssml-workshop-agenda.html
http://www.w3.org/TR/speech-synthesis/

A problem in SSML is that the possible values for the attributes in the say-as
element are undefined. Everyone who wishes to use this feature needs to define their
own values. This hinders consistent implementations across applications and platforms,
and thus opposes the very purpose of the specification. As a result of this, there is little
support for the say-as element so far, even though most larger speech synthesis
processors currently support or are in the process of implementing support for SSML.
Defining which values are useful and necessary is a challenge. The SSML specification
(W3C Recommendation 7 September 2004) says:

Defining a comprehensive set of text format types is difficult because of the
variety of languages that have to be considered and because of the innate
flexibility of written languages. SSML only specifies the say-as element,
its attributes, and their purpose. It does not enumerate the possible values
for the attributes. The Working Group expects to produce a separate
document that will define standard values and associated normative
behavior for these values. Examples given here are only for illustrating the
purpose of the element and the attributes.

The first version of this separate document was published on May 26 200527 as a W3C
Working Group Note. In the rest of this paper, I will refer to this document as the Note.

In light of the the W3C's definition of a Working Group Note, it can be disputed
whether the expectation of "a separate document that will define standard values and
associated normative behavior" has been fulfilled by the SSML 1.0 Say-as Attribute
Values Note. The Note itself states that "Although the content may of course change
before being introduced into a Recommendation-track document, the Working Group
believes that the publication of this Note at this time may assist vendors in moving
towards a common implementation rather than away", but also that "Comments
received may be taken into consideration if the material in this Note is used in some
form in the creation of a Recommendation-track document." It is currently unclear
whether say-as will be formally standardized.

The say-as element has three attributes: interpret-as, format and detail:

<say-as interpret-as="cardinal" format=","
detail=".">1.000,50</say-as>

The value of the required attribute interpret-as specifies the semantic type of the
say-as element's content – whether it is a date, a cardinal number, a time of day etc.
The optional value of format suggests a more detailed interpretation for types with
ambiguous format, such as the ordering of the fields in a date (for example, American
month-day-year vs European day-month-year).

As defined in the SSML specification the detail attribute, also optional,
specifies the level of detail the contents should be spoken with, for instance whether
punctuation should be read out loud or just signaled with changes in prosody. However,
in the Note, detail is instead used to specify grouping of the contents, such as

27 SSML 1.0 say-as attribute values: http://www.w3.org/TR/2005/NOTE-ssml-sayas-20050526/

14

http://www.w3.org/TR/2005/NOTE-ssml-sayas-20050526/

specifying the thousands separator in a cardinal number – in other words, where instead
of how. This inconsistency may be resolved in future versions of the Note and/or the
SSML Recommendation.

It is important to note that the say-as element provides a hint about the
semantics of the content, not an exact specification of what should be said. Thus, it may
not always be spoken exactly the same way by all synthesis engines. The intent is to
convey the same meaning, not necessarily the same rendering. The synthesis engine
should speak the content according to what is appropriate for the language, locale and
the user's preferences.

There is an alternative to say-as markup. One could, in an element or directly
in the source document, replace the numerical expression with text. This solution,
however, is much less flexible when it comes to rendering the text according to the
user's preferences. It is also more difficult to automate.

Like the specification it is a part of, the say-as element is intended to be
language independent. I will note some internationalization issues in the next chapter,
but a comprehensive analysis of the Note's suitability for cross-language application
falls outside the scope of this thesis.

As a side note, nothing in the SSML specification prevents the say-as
element from being used to mark up non-numerical content. In fact, the specification
explicitly suggests acronyms as a possible use case, though it immediately goes on to
suggest other ways of dealing with acronyms. The Note does not give any examples of
content without numbers. This project deals with numerical content only.

15

3 Defining the semantic categories

3.1 Formats defined in SSML

Below is a summary of the six values for interpret-as defined in the SSML 1.0
say-as attribute values W3C Note of 26 May 2005.

3.1.1 Defined values

Date

The value date indicates that the contained string is a Gregorian calendar date.

Example:

<say-as interpret-as="date">10.12.2005</say-as> indicates that
the contained text is a date. It does not specify what date it is – it may be December
10 or October 12.

The value of the format attribute when the value of the interpret-as attribute is
"date" is built from the three characters d (day), m (month) and y (year), which
indicates presence and ordering of the fields. The Note specifies that the speech
processor must support at least three separator characters: the hyphen (-), the forward
slash (/) and the dot (.). Which separator character is present in the contents is not
specified in any of the attributes. The speech processor is expected to detect this
automatically. The Note also requires that the same separator character is used to
delimit all fields in a date string.

Example:

<say-as interpret-as="date" format="dmy">10.12.2005</say-
as> indicates that the contained text is the date December 10 in the year 2005.

The detail attribute is undefined for date.

Time

The value time indicates that the contained string is a time of day. The value does not
cover durations or time ranges.

16

Example:

<say-as interpret-as="time">10.15</say-as> indicates that the
contained text is a time of day. It does not specify whether it is a quarter past ten in
the morning or in the afternoon.

The format attribute has two possible values when the value of the interpret-as
attribute is "time": hms12 and hms24. They specify whether the time is in the 12-
hour or the 24-hour format. The required separator characters are the colon (:), the dot
(.) and the empty string (). As in date, the speech processor is expected to detect the
separator character automatically. However, unlike date's dmy format, hms does not
specify the presence nor the ordering of the fields. The order is expected to always be
hour, minute, second. The presence of minutes and seconds fields in the string is
optional, but the string cannot contain a seconds field if it does not contain a minute
field.

Example:

<say-as interpret-as="time" format="hms24">10.15</say-
as> indicates that the contained text is the time 10.15 in the 24 hour time format, in
other words, a quarter past ten in the morning.

The detail attribute is undefined for time.

Telephone number

The value telephone indicates that the contained string is a telephone number.

Example:

<say-as interpret-as="telephone">55 58 00 00</say-as>
indicates that the contained text is a telephone number. It does not specify what kind
of telephone number it is, it may be in a different country or even be an internal
number in a company.

The format attribute when the value of interpret-as is "telephone" is a string
of digits corresponding to country codes defined by the International
Telecommunication Union in the specification ITU-CC. These codes are commonly
known as the country prefixes we dial when making international calls. A country code
can be part of the contained string even though it is specified in the format attribute,
and if they differ, the one contained in the string has priority.

17

Example:

<say-as interpret-as="telephone" format="47">55 58 00
00</say-as> indicates that the contained text is a telephone number in Norway.

The detail attribute is undefined for telephone.

Character string

The value characters indicates that the contained string should be spoken as a
series of alphanumeric characters, i.e. spelled out.

Example:

<say-as interpret-as="characters">747</say-as> indicates that
the contained text should be pronounced "seven four seven" rather than "seven
hundred forty seven".

The format attribute when the value of interpret-as is "characters" is one of the
values glyphs or characters. The default value is characters.

If format is set to glyphs, the characters should be read with glyph
information, that is, whether the character is uppercase or lowercase, accents and
diacritics etc. This is important for reading passwords and other text that must be
rendered exactly as it is written.

Example:

<say-as interpret-as="characters"
format="glyphs">aBc47</say-as> indicates that the contained text should
be pronounced as "lower a upper b lower c four seven".

If format is set to characters or is undefined (since characters is the
default), the characters should be spelled out without detailed glyph information.

Example:

<say-as interpret-as="characters"
format="characters">aBc47</say-as> indicates that the contained text
should be pronounced as "a b c four seven".

The detail attribute is a series of digits specifying how the characters are to be
grouped. This can be useful e.g. for account numbers, registration codes and other long
numbers that are commonly grouped in a special way when spoken. Given a Norwegian

18

bank account number of 11 digits, the value of the detail attribute would typically
be "4 2 5". It is up to the synthesis processor how the grouping is to be realized
phonetically. If the specified value doesn't add up to the number of characters in the
string, the detail attribute should be ignored entirely.

Example:

<say-as interpret-as="characters"
detail="425">82000176318</say-as> indicates that the contained text
should be pronounced "eight two zero zero <pause> zero one <pause> seven six
three one eight".

Cardinal number

The value cardinal indicates a regular cardinal number, integral or decimal, with an
optional leading + or – to indicate positive or negative numbers.

Example:

<say-as interpret-as="cardinal">1995</say-as> indicates that
the contained text is the cardinal number one thousand nine hundred and ninety five.

The format attribute indicates the character used to separate the integral and
fractional parts of the number. In Norwegian, this will usually be a comma, while in
English, a dot is the common value. If format is not specified, it is up to the
processor to decide.

Example:

<say-as interpret-as="cardinal" format=".">1.995</say-as>
indicates that the contained text is the cardinal number one point nine hundred and
ninety five.

The detail attribute indicates the character used to group the integral parts of the
number. In Western European languages this is usually the thousands separator.

Example:

<say-as interpret-as="cardinal" detail=".">1.995</say-as>
indicates that the contained text is the cardinal number one thousand nine hundred
and ninety five.

19

Ordinal number

The value ordinal indicates an ordinal integral number. It is up to the synthesis
processor to decide how to handle ordinal numbers with separator characters.

Example:

<say-as interpret-as="ordinal">21</say-as> indicates that the
contained text is the ordinal number twenty-first.

The format and detail attributes are both undefined for an interpret-as
value of ordinal.

3.1.2 Overview

interpret-as format detail separator
characters

date d m y N/D - / .

time "hms12" or "hms24" N/D : . " " (space)

telephone ITU-CC country codes N/D N/D

characters "glyphs" or "characters" grouping digits N/D

cardinal fractional separator char integral grouping char N/D

ordinal N/D N/D N/D

Table 1: Overview over attribute values specified in the Note. N/D = Not Defined.

3.2 Defining new values

The Note provides a mechanism for extending the say-as element. Backwards
compatibility with the values defined in the Note is required, and there should be a
clear distinction between the W3C-defined values and the ones defined by vendors. To
achieve this, we use namespaces.

Namespaces, defined by W3C for use in XML languages, is a method for
qualifying element and attribute names in order to make them unique.28 XML is a
framework for designing new languages, such as SSML. Anyone can design a new
language to fit their needs. This leads to problems with naming collisions – two
languages may contain elements with the same name, or, if the defined language allows
vendor-specific extensions, two vendors may use the same name for their differently-
defined extensions. Namespaces allow processors to easily identify the elements they

28 Namespaces in XML: http://www.w3.org/TR/REC-xml-names/

20

http://www.w3.org/TR/REC-xml-names/

are designed to recognize and process, even when coming across an element with a
name it recognizes but which is designed for use with some other processor.

I will not go into the details of namespaces here, except a quick note on how
they are used. A namespace is identified by an Uniform Resource Identifier, a URI29.
The most common way to use a namespace is to declare it in the document's root
element, using the attribute xmlns, like this:

<speak version="1.0"
xmlns="http://www.w3.org/2001/10/synthesis"
xmlns:dasp="http://ling.uib.no/~eira/master/dasp">

The prefix is then used to qualify the appropriate names, like this:

<say-as interpret-as="dasp:fraction">

Using this method, the say-as element can be extended if needed.

3.3 Corpora

In order to determine the need for new or changed values, corpus data was gathered and
examined. The samples have been collected from the tagged Lancaster/Oslo-Bergen
(LOB) corpus, Norsk aviskorpus and the Oslo corpus. The output has been manually
sorted to leave only one example of each different format found in each language – for
this task, this is all that is needed, since the goal is to find examples of the formats that
exist, not to perform a statistical analysis of their frequency or distribution.

A corpus is, broadly speaking, a collection of text30. Used in modern linguistics,
the term is usually restricted. McEnery/Wilson31 list four characteristics:

• Sampling and representativeness

• Finite size

• Machine-readable form

• A standard reference

It is important to note that these are characteristics, not requirements. A corpus'
features will vary with its purpose. While corpora intended for quantitative studies
usually will have a finite size and carefully balanced sampling, corpora intended to give

29 Uniform Resource Identifiers (URI): Generic Syntax: http://www.ietf.org/rfc/rfc2396.txt
30 Corpus linguistics: http://ling.uib.no/~desmedt/cursus/corpus/syllabus/intro.html
31 Definition of a Corpus: http://bowland-files.lancs.ac.uk/monkey/ihe/linguistics/corpus2/2defin.htm

(supplement to the book Corpus Linguistics, see http://bowland-
files.lancs.ac.uk/monkey/ihe/linguistics/contents.htm)

21

http://bowland-files.lancs.ac.uk/monkey/ihe/linguistics/contents.htm
http://bowland-files.lancs.ac.uk/monkey/ihe/linguistics/contents.htm
http://bowland-files.lancs.ac.uk/monkey/ihe/linguistics/corpus2/2defin.htm
http://ling.uib.no/~desmedt/cursus/corpus/syllabus/intro.html
http://ling.uib.no/~eira/master/dasp
http://www.w3.org/2001/10/synthesis
http://www.ietf.org/rfc/rfc2396.txt

a broad scope of the language or to monitor changes will often have a dynamic size,
new texts being added on a regular basis.

Corpora are useful sources for collecting empirical knowledge about real-world
language use. Because the intention is to as many different examples of numerical
expressions as possible, the corpora used here have been selected to cover as wide an
area as possible, without a strict criteria about representativeness. The LOB corpus is a
well-balanced corpus for the British English language, modelled after the American
Brown corpus32. The Oslo corpus33 is the resource that comes closest to a standard
corpus for Norwegian. While it has not been designed to be representative, it is quite
large, and contains both factual and literary matter. Newspapers are a particularly good
source of numerical expressions – dates, money and percentages are often important in
news. This made it natural to add Norsk aviskorpus to the selection.

The next sections present the results of the corpus investigations. In 4.4, an
overview is given of categories in the Note that were found in the corpus. In 4.5, the
categories present in the corpora but not in the Note are listed and discussed.

3.4 Values defined in the Note

Below is an overview of examples found in the corpora. In this section, samples
covered by the categories defined in the Note are presented and discussed. In the next
section, samples that are not covered by the Note are presented.

SSML aims to be language-independent. For that reason, it is important to
investigate how say-as works for several languages. I have chosen to look at English
and Norwegian. In some cases, examples of a given construct were only found in one
language. There may be two reasons for this: either, that construct is not used in that
language, or it is used but simply not present in the used corpora. The cases are
discussed in more detail as they occur.

It is important to note that the examples found in the corpora are not necessarily
comprehensive. If an example of a particular kind of numeral is not found, it may be a
coincidence, and does not mean that using a number that way is not possible. And, of
course, numerical expressions are a (very) productive class, so that a particular
expression has not been used yet does in no way entail that it cannot be used. To
distinguish the possibilities, one may broaden the search to other corpora, or utilize
introspection34.

The categories are semantically motivated, but with a bias towards speech
synthesis. The purpose is to distinguish between numerical expressions that are
pronounced differently even though they may look identical. These differing
pronunciations occur because the expressions have different meanings. Thus, the
categories have overlapping formats – a numerical expression covered by one category
may look just like one covered by another.

This does not mean that the defined categories do not make demands on what
the contents should look like – in fact, most of them do. This is a consequence of the
requirement that the system should be implementable for speech synthesis purposes. In

32 The LOB Corpus: http://khnt.hit.uib.no/icame/manuals/lobman/LOB1.HTM
33 Oslo-korpuset av taggede norske tekster (bokmålsdelen): http://www.tekstlab.uio.no/norsk/bokmaal/
34 N. Chomsky, Syntactic Structures (2002), 49-50

22

http://www.tekstlab.uio.no/norsk/bokmaal/
http://khnt.hit.uib.no/icame/manuals/lobman/LOB1.HTM

order to speak the number correctly, the synthesis processor needs to be able to
recognize the different parts of a numerical expression. In the case of a date, it needs to
know which part is the day, which is the month and which is the year.

3.4.1 Ordinal

Det kan høres vel optimistisk ut med medalje etter den skuffende <say-as
interpret-as="ordinal">9</say-as> . plassen i fjor

five castles , either built by Edward <say-as interpret-
as="ordinal">1</say-as> , occupied by the English for a limited period

five different interpretations : *- <say-as interpret-
as="ordinal">1</say-as> . genitive singular when split from some masculin

changes in the value of money . <say-as interpret-
as="ordinal">1,000</say-as>th refugee . Britain received last week her
1,000th

Table 2: Ordinal numbers

These examples present some challenges. First, how should trailing punctuation or
suffixes that are commonly used to indicate that the numbers are ordinal, be handled?
Punctuation usually consists of a dot (.), but obviously, a number followed by a dot in
running text is not always an ordinal number. In English, it is common to use suffixes
st, nd, rd and th.

There are four ways to handle these instances:

1. Add SSML markup for all the ordinal numbers, as in the above examples

2. Add SSML markup for ordinal numbers with trailing punctuation, but not with
suffixes

3. Add SSML markup for ordinal numbers with suffixes, but not with punctuation

4. Do not add SSML markup for ordinal numbers with suffixes or trailing punctuation

Handling the two cases differently does not make a lot of sense, since they are in
essence the same. There seems to be no real advantage to not adding markup. The
processor should be expected to handle the instances with suffixes correctly, but as
punctuation is ambiguous, adding markup can be of important help to the synthesis
processor.

Say-as with an interpret-as value of ordinal cannot contain
punctuation or letters. I believe the following procedure would be the most reasonable
way for a synthesis processor to handle the case of ordinals with trailing suffixes or
punctuation:

23

A processor that supports the say-as element should, in the case of suffixes,
speak the contained number as an ordinal, and ignore a known suffix immediately
following (i.e. no whitespace) the markup. In the case of punctuation, processor-
specific heuristics should be applied to determine whether the dot marks the end of a
sentence or should be seen as part of the ordinal number and thus be ignored. This kind
of heuristics would also be needed if the number was not marked up, so the SSML
markup imposes no extra requirements on the processor.

Since the specification only allows integral ordinal numbers, the processor may
automatically treat relevant punctuation inside the number as grouping characters or
simply ignore it35.

3.4.2 Cardinal

I forhold til 2003 økte salget i fjor med ca . 25 prosent , og vil for hele året ende på
nærmere <say-as interpret-as="cardinal" detail=" ">115
000</say-as> . 36

<say-as interpret-as="cardinal">29</say-as>-åringen kom søndag
kveld til familiens hus på Gause

Den kostet minst <say-as interpret-as="cardinal"
detail=".">5.100</say-as> personer livet

Her var bølgen opptil <say-as interpret-as="cardinal"
format=",">10,5</say-as> meter høy

Senterets første måling indikerer at skjelvet måler <say-as interpret-
as="cardinal" format=".">8.0</say-as> på Richters skala .

Shirov har de siste ti årene vært inne på sjakkens topp-<say-as interpret-
as="cardinal">10</say-as>-liste

in the potential range <say-as interpret.as="cardinal"
format=".">-0.55</say-as> to -0.80 V . in both these papers one meets again
the cu

Mr K's latest speech scared <say-as interpret-as="cardinal"
detail=",">1,157</say-as> East Germans to cross into west Berlin's receptio

as background to other activity . a <say-as interpret-
as="cardinal">14</say-as>-year-old boy confesses , *' you can neck and
kiss your gir

is just under .5 compared with <say-as interpret-as="cardinal"
format=".">.8</say-as> for the midland region and 1.2 for the country as

35 as noted in the say-as note of 26 May 2005, section 3.6, first paragraph:
http://www.w3.org/TR/2005/NOTE-ssml-sayas-20050526/#S3.6

36 SPACE is a valid separator character - http://www.w3.org/TR/REC-xml/#AVNormalize states that
"All attributes for which no declaration has been read SHOULD be treated by a non-validating
processor as if declared CDATA.", meaning that the whitespace in the value should not be normalized
but be preserved as-is when passed from the XML parser to the processor.

24

http://www.w3.org/TR/REC-xml/#AVNormalize
http://www.w3.org/TR/2005/NOTE-ssml-sayas-20050526/#S3.6

Most of these examples conform to the defined standard in a straightforward way. The
only content that might pose difficulties is the last, ".8". The specification does not
handle this directly, but as it is common practice to omit the integral part of decimal
numbers below 1, processors should be expected to handle this according to the custom
in the spoken language. In English, it would typically be read as "point eight", whereas
in Norwegian, it is common to insert the implied zero, reading it as "null komma åtte".

3.4.3 Time

Tirsdag 04.01.2005 , <say-as interpret-as="time"
format="hms24">08:05</say-as>

Da den første navnelista ble publisert klokka <say-as interpret-as="time"
format="hms12">11.30</say-as> , var antallet savnede 279 .

I dag <say-as interpret-as="time" format="hms24">0800</say-
as> offentliggjorde etaten en ny liste .

centred ESE of Newfoundland at <say-as interpret-as="time"
format="hms24">00</say-as> GMT 26 February 1959 (fig 1 (a)) moved ra

from 2200-0200 hr ; and 1st , from <say-as interpret-as="time"
format="hms24">0200</say-as>-0600 hr . similar ontogenetic differences are
appare

was reported missing by her parents at <say-as interpret-as="time"
format="hms12">1 a.m</say-as> on Sunday July 9 . a search was made , but

in tonight's *' lifeline **' (BBC , <say-as interpret-
as="time">10.15</say-as>) . they will be asked to comment on the design o

C04 federation of Rhodesia and Nyasaland (<say-as interpret-as="time"
format="hms12">10.30 p.m</say-as>) . say Granada TV , the producers : *'
w

The Note does not mandate support for a.m and p.m without the final dot. The corpus
results show several examples of a.m and p.m used without the final dot. Searches in
more recent corpora37 do not give any results without the final dot, which may indicate
that people have moved away from this way of writing these abbreviations. However,
the processor should be expected to read both old and new texts as close as possible to
how a human would read them. Thus, there may be good reasons to allow common
mispunctuation.

The Note does not require content to follow the suggested lexical token
definitions, but it does expect of conforming processors that they should support the
lexical tokens defined in the Note. In other words, content that differs from the defined
lexical tokens is allowed but may not be correctly interpreted by the processor.

37 FROWN untagged, 90's, FLOB untagged, 90's, Australian untagged, 80's

25

When marking up the text, I will allow a.m and p.m without final punctuation
for the above reason. I will also allow using the number 24 for end-of-day midnight38.
How to handle this when speaking will be up to the processor.

The Note is ambiguous when it comes to which time separator characters
processors are required to support. The introduction states that "At least one separator
character must be supported: the colon (':')." However, under the heading "Basic tokens
of a time string", three separator characters are listed; colon (":"), dot (".") and empty
string (""). If say-as is to work internationally, all three are needed. Thus, I will assume
processor support for all three.

3.4.4 Date

Ronny Deila kunne juble for mål for Odd mot Viking <say-as interpret-
as="date" format="d">16</say-as> . mai .

Frode Olsen i aksjon for Viking mot Bryne i <say-as interpret-as="date"
format="y">2003</say-as>

Selv om Kripos uomtvistelig er vår fremste ekspertise på dette området , slapp de først
til torsdag <say-as interpret-as="date" format="dm">30.12</say-
as> . , fire døgn etter katastrofen .

Publisert : <say-as interpret-as="date"
format="dmy">03.01.2005</say-as> - 19:49

AV/DN96/01 : -96 () Forfatter : Knut Asbjørnsen Dato : <say-as interpret-
as="date" format="dmy">21-06-96</say-as> 13 : 09

Årsrapporten for forsikringsselskapet Skogbrand for perioden 1/10 -93 til 30/9-94
forteller derfor om et rolig forsikringsår

other words the brunt of the attack in <say-as interpret-as="date"
format="y">1381</say-as> fell on those who were , either professionally or

, via Steyning , opened on July <say-as interpret-as="date"
format="d">1</say-as> , 1861 . he got to work immediately . he and the

Salisbury on the morning of the <say-as interpret-as="date"
format="d">11</say-as>th , was the thought that *' Lord Lytton (was) goi

Note that one of the lines above does not contain a markup suggestion. That is because
the Note requires that "The same character must be used to delimit all fields in a date
string". In Norwegian, "d/m-y" is a common format. I will get back to this problem.

In a sentence such as "on the morning of the 11th", 11 is both an ordinal number
and a date. For the purpose of reading the text out loud, which is the intended
application of SSML, knowing that it is an ordinal number is more useful. At least in
Western European languages, ordinal numbers are pronounced identically whether they

38 See discussion at http://lists.w3.org/Archives/Public/www-voice/2005AprJun/0032.html and
http://lists.w3.org/Archives/Public/www-voice/2005AprJun/0046.html

26

http://lists.w3.org/Archives/Public/www-voice/2005AprJun/0046.html
http://lists.w3.org/Archives/Public/www-voice/2005AprJun/0032.html

are dates or any other semantic type. I am not aware of languages where this is not the
case, though they may of course exist. In light of this information, I will choose to give
ordinal priority over date when marking up the text.

The timestamp format "01012005" is not supported. However, this way of
writing dates is uncommon in texts meant to be read by humans, and so falls outside the
scope of say-as.

The English corpus material did not contain dates on compact format (e.g.
dd.mm.yyyy). This is not surprising, since in English it is a lot more common to spell
out the month name, either in full or abbreviated. The Norwegian examples are
sufficient to demonstrate the use of SSML for such cases.

3.4.5 Character string

HJULENE BRAKK : Dette Boeing <say-as interpret-as="characters"
format="characters">737</say-as>-lasteflyet ble stående på rullebanen
på flyplassen i Banda Aceh

Vogntog-velt på <say-as interpret-as="characters" detail="1
2">E39</say-as> i Høyanger

Bank : Kontonummer 12 eller <say-as interpret-as="characters"
format="characters" detail="4 1 2 1
5">8380.08.07800</say-as> hvis du benytter nettbank eller kontofon .

Ett døgn senere var det første flyet fra <say-as interpret-
as="characters">335</say-as>-skvadronen med personell av gårde .

2b . hence , o(t) must admit both <say-as interpret-as="characters"
format="characters">2a</say-as> and 2b as periods . if A , B , and C are
any thre

How to realize the grouping phonetically is up to the processor. A central problem is
whether to read each number separately, using the grouping value to insert pauses, or
whether to use the grouping to read more complex numbers. This is not explicitly
defined in the Note. Exemplified by the account number, two sensible ways to read the
number in Norwegian would be:

<say-as interpret-as="characters" format="characters"
detail="4 1 2 1 5">8380.08.07800</say-as>

Åtte tre åtte null <pause> punktum <pause> null åtte <pause> punktum <pause> null
sju åtte null null

Or:

27

<say-as interpret-as="characters" format="characters"
detail="2 2 1 2 1 2 3">8380.08.07800</say-as>

Åttitre åtti punktum null åtte punktum null sju åtte hundre

Note that the value of the detail attributes are different. If they were not, this
decision could just be left up to the processor, as suggested by the Note. But we need to
make a conscious decision when marking up the text, and the choice will depend on the
expected rendering.

Reading simple numbers is a "safer" decision than reading complex numbers. It
will work in all cases, and is more compatible with the idea of character string as a
semantic value. Thus, I will assume that character strings will always be read one
character at a time. That means when there is a strong preference for reading a number
as complex, it should be marked up as cardinal if possible, even if it is part of a larger
word. An example of this above is the road number E39, which should then be marked
up as:

E<say-as interpret-as="cardinal">39</say-as>

3.4.6 Telephone

Telefon <say-as interpret-as="telephone" format="47">22 31
05 57</say-as>

Ring da <say-as interpret-as="telephone">02800</say-as> , og
du blir automatisk satt over til din lokale politistasjon .

Ringer du fra utlandet , er nummeret <say-as interpret-as="telephone"
format="47">+ 47 23 20 87 00</say-as>

The English corpus material contained no telephone numbers. In order to include some
common English formats, I have added the US Postal Service's phone numbers, as
listed on their web site:

General Information: <say-as interpret-as="telephone">1-800-ASK-
USPS</say-as>

or <say-as interpret-as="telephone">(800) 275-8777</say-as>

Domestic Package Tracking <say-as interpret-as="telephone">1-800-
222-1811</say-as>

28

The Note does not define a way to group digits in phone numbers. The processor is
expected to do this automatically based on whitespace and separator characters in the
contained text, and language-specific customs. The Note imposes no restrictions on the
contained string, the content is only restricted by the synthesis processor's abilities.

3.5 Categories found in corpora, but not covered in the Note

Some findings are not covered by the categories defined in the Note. Some are specific
semantic categories that for most practical purposes can be marked up as cardinal
numbers, including percentages and currencies. Bible passages are compounds of
various types of numbers, and cannot be satisfactorily marked up as cardinal numbers. I
will get back to this.

The goal must be to have the smallest number of categories that cover the field
well and do not overlap. This is necessary to achieve ease and elegance of
implementation and authoring. Pros and cons must be weighed to decide where the
limits go. Categories that are only needed for number formats that are not regularly
found in the target group of texts should be avoided.

I have defined two main conditions that should be met for a new category to be
made:

• Distribution: The format must have a non-negligible distribution in the target
texts, both in number and in being present in a variety of domains.

• Relevance: The format must be semantically well delimited

I will go through some uncovered categories in detail:

3.5.1 Date

Årsrapporten for forsikringsselskapet Skogbrand for perioden 1/10 -93 til 30/9-94
forteller derfor om et rolig forsikringsår

This sentence shows two common variations on the date format d/m-y, one with a space
before the year and one without. The first case can be trivially handled by the date
format as defined in the Note, simply by marking up d/m and -y separately. This is also
required simply because the Note does not allow whitespace in a date string. The
representation would be:

<say-as interpret-as="date" format="dm">1/10</say-as>
<say-as interpret-as="date" format="y">-93</say-as>

29

The Note does not explicitly allow a leading date field separator for the format y.
Supporting this would be up to the synthesis processor. Even if the processor does not
explicitly handle this case, any synthesis processor with sane error handling should
simply ignore the leading hyphen.

The second case is harder to handle. One could follow the above procedure and
mark up the date as two separate elements. This does however seem like a hack – the
restriction is imposed by limitations of the markup language rather than mandated by
the semantics of the text itself. This is also the case for the first date in the example.
Thus, I propose a new definition:

Definition: A dasp:date consists of the three optional fields m, d and y, in any
order, separated by separator characters. The presence and ordering of the fields is
specified in the format attribute, as for date. The synthesis processor should
support at least the following tokens as separator characters: - (hyphen), / (forward
slash), . (dot) and whitespace. Whitespace preceding or following another separator
character should be ignored.

We then end up with the following markup for the two dates in the example:

<say-as interpret-as="dasp:date" format="dmy">1/10 -93</say-
as>

<say-as interpret-as="dasp:date" format="dmy">30/9-94</say-
as>

3.5.2 Range

30-40 utlendinger drev business på øya .

21.-23 . januar

700.000-800.000 personkunder

I sesongen 1992/1993

mellom 26-28 timer

same as the C.F.O forecasts . the 1,000-500 mb thicknesses and the 500 mb heights
are muc

. 7 . repeat (5) . then repeat (1-4) , plug will be wetter than when you started by

(p 5) , points to the period c 1280-1300 for the date of the group of pottery from
Lesnes

or what parents want . **' a number of 14/15-year-olds seem to like the serials on
television but it is

30

table tops ; (b) . this lasted from 4 1/2 - 7 years of age roughly . at first the child

As we can see, the ranges are composed of numbers of various categories: cardinal
numbers, dates and fractions (not defined in the Note). It is also quite likely that one
will find ordinal numbers ("1.-3. place") and times ("12.00-14.00").

What all of these examples of ranges have in common is that they consist of two
(and always two) numbers of the same semantic category, usually a hyphen, "-".
Forward slash, "/", seems to occur if the second number immediately follows the first in
the domain. In cases other than this the "/"as separator character often suggests that the
expression is not a range, but two separate examples for separate cases. One example
could be a recipe that lists the needed ingredients for two versus four servings. We
would then find "2/4 eggs" without it being the range "two to four", but rather "two or
four" (depending on which mode of the recipe you're following). And last but not least,
the choice of separator character may be language specific.

 How to speak the ranges is obviously language specific, and varies a lot more
than the values defined in the Note. The first five examples above will typically be read
in Norwegian as "tretti til førti", "tjueførste til tjuetredje", "sjuhundretusen til
åttehundretusen", "nittennittito nittennittitre" and "tjueseks og tjueåtte". This depends
on context and must be handled by the synthesis processor. Handling these differences
is beyond the scope of say-as.

SSML specifies that "The say-as element can only contain text to be
rendered."39 In light of this, there are three possible ways to handle the case of ranges.
All three involve the creation of a new value for interpret-as, range, using the
detail attribute to specify the separator character. This use of detail is in line
with how it has been used in the Note.

The first possible approach is to advocate a change to the SSML specification to
allow say-as to be recursive:

<say-as interpret-as="range" detail="-">

<say-as interpret-as="ordinal">21</say-as>. -

<say-as interpret-as="ordinal">23</say-as>.

</say-as> januar.

Changing a W3C Recommendation is a process that takes years, and the proposed
change might not be accepted. In any case, changing the SSML specification is beyond
the scope of this thesis.

The second approach is to use the format attribute to specify the semantics of
a range's contents:

<say-as interpret-as="range" format="ordinal"
detail="-">21. - 23.</say-as> januar.

39 SSML 1.0 S3.1.8

31

As SSML 1.0 states that "the optional format attribute can give further hints on the
precise formatting of the contained text for content types that may have ambiguous
formats", this solution may be defended. It is, however, not very elegant, and is harder
to implement.

The third approach is to drop the inner level of semantics, giving "range" as the
only semantic information:

<say-as interpret-as="range" detail="-">21. - 23.</say-as>
januar.

This seems a suboptimal solution, since more information is lost than gained as far as
phonetic realization is considered.

A relevant question is whether it is useful or necessary to add markup for
ranges. As seen above, the result is either added complexity or lost information. The
cost may be higher than the benefit. The question is to what degree the synthesis
processor is able to utilize the added information to separate ranges from similarly
formatted numerical content, such as "30 minus 40".

It would be interesting to compare a synthesis processor's results with and
without tagging of ranges before deciding whether the benefit outweighs the cost.
Unfortunately there is a bootstrapping problem. Until the value has been properly
defined, existing synthesis processors will not implement support for them.

In light of the discussion above, I will not use specific markup for ranges in this
project.

3.5.3 Fraction

I den nye filmen " 37 1/2 " spiller teatersportekspert Helén Vikstvedt en Dagbladet-
journalist i midtlivskrise .

Morton's very fierce 3-carburetter 4 1/2-litre Bentley and Morley's drastically lowered
4 1/2-li

put opposite one another so that r = 3/4 . the values of X3 and X4 are put toget

Fractions are important in texts meant to be human-readable. In such texts, you will
often find 1/2 instead of 0.5. Unfortunately, the Note does not handle fractions. Ideally,
the speech synthesis should not hinder or disrupt the listener's comprehension of the
text. In order to maintain flow and ensure correct understanding, it is important that the
synthesis processor reads "a half" instead of "one slash two", or worse, mistakes it for a
date.

Fractions are semantically well defined, and adding this as a new category will
not overlap already defined categories. In conclusion, the benefits outweigh the cost,

32

and a new category should be defined.

There are two possible ways to define this new category. Consider the example
"1 1/2", normally read as "one and a half". Should the integral number be contained in
the markup, or left outside?

Definition 1: A fraction consists of an optional integral number with following
whitespace, followed by an integral number, a separator character, and an integral
number:

<say-as interpret-as="dasp:fraction">1 1/2</say-as>

Definition 2: A fraction consists of an integral number, a separator character, and an
integral number.

1 <say-as interpret-as="dasp:fraction">1/2</say-as>

The latter definition, where only the fraction itself is marked up, seems to be the
cleanest and least overlapping solution. The synthesis processor should utilize this
information to speak preceding numbers according to context – in Norwegian, that
means adding the word "og", rendering the expression "en og en halv", completely
marked up as:

<say-as interpret-as="cardinal">1</say-as> <say-as
interpret-as="dasp:fraction">1/2</say-as>

In other words, no information will be lost by choosing the simpler solution.

The format attribute could be used to specify the separator character, similar
to how it is used for the value cardinal defined in the Note. The alternative is to
leave the separator character undefined, leaving it up to the processor to transparently
support likely separator characters. This is analogous to how the Note handles separator
characters for time.

There seems to be no real benefit to specifying the separator character explicitly
in the case of fractions. If the content is a valid fraction, there will only be one separator
character, which should be easily identifiable for the processor. In conclusion, both
format and detail are left undefined for fraction. The synthesis processor is
expected to ignore any values in these attributes that it does not support, as defined in
the SSML Recommendation40.

40 SSML 1.0 S3.1.8

33

3.5.4 Ratio

survival ratio was high , at around 1 : 100 . my gravest error was in the choice of the

femoral nerve . blood pressure was 115/70 . the haemoglobin was 11.4 g per 100 ml .
a d

for a horse at the short odds of 12-1 *- I believe he will last out only on the best of

low interstage pressure ratios (3/1 or less) and by the use of lubricating oils of h

Ratios and fractions have a lot in common, both semantically and in terms of syntax.
What is the difference between a ratio and a fraction?

In simple terms, a ratio is a relationship between two or more sets (which may
or may not be in a subset/superset relation), while a fraction is a relationship between a
subset and its superset. If you have three apples and five bananas, the ratio is 3:5. A
fraction is a part of a whole, which means the proportion of apples is 3/8. The example
with blood pressure is perhaps even clearer: The first number is the maximum pressure
(during ventricle contraction), and the other is the minimum pressure (between ventricle
contractions). It is quite clear that this relationship is not a fraction. The survival ratio in
the first example, on the other hand, can easily be interpreted as a fraction. This shows
that fractions are a subset of ratios. In the following text I will for simplicity use "ratio"
and "fraction" as mutually exclusive categories, where "ratio" will mean all ratios that
are not fractions.41

The question is whether ratios and fractions can be handled by the same
category, and whether a joint category would be a suitable solution. From the examined
material it seems that "pure" fractions are significantly more common than the looser
ratio, also across domains, though a proper statistical analysis was not performed.

Ratios and fractions can be pronounced in the following ways in Norwegian:

• Ratio: hundreogfemten over sytti
• Ratio: tolv til en
• Brøk: tre fjerdedeler
• Brøk: tre av fire

The corresponding English pronunciations are:

• Ratio: onehundredandfifteen over seventy
• Ratio: twelve to one
• Fraction: three fourths
• Fraction: three out of four

41 References:
Ask Dr. Math: http://mathforum.org/library/drmath/view/63884.html
Ratio. Fraction. What's the difference? http://www.sci.tamucc.edu/txcetp/cr/math/rf/RatioFraction.pdf
Ratio: http://en.wikipedia.org/wiki/Ratio

34

http://en.wikipedia.org/wiki/Ratio
http://www.sci.tamucc.edu/txcetp/cr/math/rf/RatioFraction.pdf
http://mathforum.org/library/drmath/view/63884.html

Choosing the appropriate pronunciation is up to the synthesis processor. By extending
the fraction category to include generic ratios, the choice is made much harder by
at least doubling the possibilities. If the processor chooses the less appropriate of the
two ways to speak a fraction in a given context, it is not a big problem. The meaning is
not changed. The consequences are worse if the wrong choice between ratio and
fraction is made, because in this case the meaning of the expression is changed. A
situation like this is important to avoid.

There are three possible ways out:

1) Have separate categories for ratios and fractions
2) Have a generic ratio category, but use the format attribute to specify ratio or

fraction
3) Ignore non-fraction ratios altogether.

Because ratios are limited in frequency and cross-domain use, and because adding
ratios is expensive to implement, I will go with the third option of ignoring non-fraction
ratios. The benefits do not outweigh the costs for a generic-purpose system.

3.5.5 Index

18 . we therefore had to consider : (1) whether any new advice could be brought
effecti

. **' measures agreed so far include : 1 . a mass call-out of police , special constables

of shots within reasonable limits . 1 . introduction . about a hundred million shots a

Huxley , the flame trees of Thika . 1 : impartiality . Mr Corfield has a distinguishe

header tanks , as indicated in figures 7-10 . with the simple cross-flow layout in figure
7 ,

also seen: 7:10

These numbers are in themselves covered well by the value cardinal. What makes
them special is that they are often written the same way as ordinal numbers or
sometimes even ranges. In some contexts and/or languages list indices may be more
appropriately spoken as ordinals than cardinals, and should be marked up accordingly.
This is an obvious problem for automatic tagging. There is, however, no significant
advantage to creating a specific interpret-as value for lists and other indices.

In conclusion, no new category is created to handle these examples.

35

3.5.6 Mathematical expressions

we impose are (1.3) , for some b 0 , together with the requirement that y(x) be L2

ourselves to l 0 . the case l = 0 , with q(r) continuous , is just the Sturm-Liouvi

H so obtained was such that ph 0.05 . 4 . discussion . the following discussion deals

located on the x axis , between 0 and 1 , and g(ch) also on the x axis , between 1

with s = 1/2 we have from *?13 10.6 equation (83)

resistance the current will be : *- 3 x 10-14 coulombs / sec . the charge on 0

: x thousand pounds will produce x or x/2 or x/4 or 2x or 4x votes .

, H is distributed approximately as xe2 with d.f = k-1 ,

respectively . the proportion between z1 and z2 is therefore 0.4732 - 0.2734 = 0.1998

The numbers are intrinsically cardinal numbers. The challenge for the synthesis
processor is to use the context to decide how to speak the operators. This is a domain-
specific task that lies outside the scope of say-as.

3.5.7 Score

after the sinewy Scots had led 6-0 for nearly an hour . five sparkling minutes of fl

1- 0 til Sør-Afrika

Gustad har likevel en bedre følelse nå enn i september , da det ble 22-25 i seriestarten
.

Sports results and similar scores are very common in newspaper articles and other
media. Different sports have different conventions on how to read the scores, though
the meaning will usually be kept even if the reading does not follow the expected
convention. When it comes to format, scores have a lot in common with ranges.

Scores do not strictly meet the cross-domain criterion. However, given the
proportion of sports articles in the media and importance of sports in modern society, a
separate score category may still be warranted based on the size of the domain rather
than number of domains. The category is well delimited and does not add significant
complexity for implementors or authors.

Definition: The content of a say-as element with the value of score for
interpret-as consists of a cardinal number, optional whitespace, followed by a
separator character, optional whitespace, followed by another cardinal number. The
hyphen ("-") must be supported as a separator character. Other separator characters

36

may be supported. format and detail are undefined for score.

<say-as interpret-as="dasp:score">6-0</say-as>

3.5.8 Guns

between two fellows . **' he hauled a .44 from a back pocket and laid it on his lap .

Bullet sizes are often found in crime reports and similar contexts. Special conventions
for reading them apply in most languages. However, these instances are relatively
infrequent when all domains are viewed together, and are hardly ever found outside a
very limited set of domains. In conclusion, a new category should not be made to
handle these cases. A synthesis processor may be programmed to recognize the
relatively small set of common bullet sizes in order to speak them correctly, or, if one
does not want to rely on the processor, the phoneme element may be used.

3.5.9 Issue numbers

to acknowledge receipt of your note nd 115/12 of the 18th of November confirming
that it is the

a paragraph from the ministry circular 5/61 which is the present practice and which is
now be

The challenge when reading issue numbers is to avoid confusing them with e.g.
fractions. Realizing that something should be read as an issue number will in most
cases require advanced interpreting of semantic context, though trigger words may be
of some help. Generic synthesis processors cannot be expected to handle these cases
reliably.

Issue numbers are not common enough to warrant a separate say-as category
to assist processors in this process. The issue and volume could be marked up
separately as cardinal numbers. In this case it will be up to the synthesis processor how
to speak the separator. Presence of cardinal markup should prevent the synthesis
processor from rendering the content as a fraction or other complex categories.

3.5.10 Biblical references

moral impasse . the quest for wisdom . 1 . 12-18 12 . I the preacher have been king
over I

37

.) the search for the supreme good . 1 . 12-2 . 26 under the pseudonym of Solomon ,
Qohe

of all the seed , but John 1 : 14 reveals that he was made flesh so that of hi

. Lit *' asked **' . we may compare 1 John 2.16 for the *' lust **' (desire) of the e

that maketh not ashamed (Rom 5 : 4,5) . the scripture speaks more than once of a *' b

Biblical references are basically composed of cardinal numbers and ranges. As they are
relatively infrequent, and in most cases domain-specific, a new category should not be
created to handle them. The synthesis processor may implement heuristics to recognize
these cases directly. As these expressions are quite complex, attempting to mark them
up with existing interpret-as values may do more harm than good. My
suggestion is therefore to leave them undefined, or alternatively specifying
pronunciation with the phoneme element.

3.5.11 Summary

Below is a table describing the six interpret-as values defined in the Note, as well as the
three new values suggested in the discussion above. No new values were defined for
the categories range, ratio, index, mathematical expressions, guns, issue numbers and
biblical references, for reasons outlined in the discussion.

interpret-as format detail separator characters

date d m y N/D - / .

time "hms12" or "hms24" N/D : . " " (space)

telephone ITU-CC country codes N/D N/D

characters "glyphs" or "characters" grouping digits N/D

cardinal fractional separator char integral grouping char N/D

ordinal N/D N/D N/D

dasp:fraction N/D N/D /

dasp:score N/D N/D -

dasp:date d m y N/D - / .

Table 3: Overview over all attribute values specified in the Note as well as in this document.

N/D = Not Defined.

Obviously, not all numerical expressions will be covered by these categories. These
expressions will simply be left untagged in a final text. For the purpose of further
investigations in this paper, numerical expressions that fall outside the defined
categories will be tagged with a dummy interpret-as value of "unknown".

38

4 Tagging

4.1 Introduction

This chapter describes the process of collecting raw data and tagging it with syntactic
and semantic information. The next section introduces the corpus the data was collected
from, and explains why this particular corpus was chosen. Section 4.3 describes the
preprocessing done before tagging could start. Section 4.4 describes the syntactic
tagging, and section 4.5 describes the semantic tagging.

The process in this chapter is described in the flowchart below:

39

Norsk aviskorpus

Preprocessing

(avk02.pl)

Syntactic tagging

XML file

XML inserted into
database

(init.php)

Semantic tagging
with say-as

(tagger.php)

4.2 Corpus data

Norsk aviskorpus42 - Norwegian newspaper corpus – is an Aksis43 project collecting
data daily from a large number of Norwegian newspapers online. The corpus is
intended both for regular empirical studies of the Norwegian language and for the study
of construction and development of new words in the language and other linguistic
changes44.

My choice of corpus was based on expected content as well as adaptation to
expected target usage of SSML. Newspapers typically contain a lot of numbers – dates,
times, statistics, finance, sports scores et cetera, which means it is a good source of
information. Newspaper articles are also a typical use-case for SSML and the say-as
element, and perhaps especially the automated tagging with such markup. Accuracy is
important, giving a need for disambiguating, but the volume and rapid updates of the
information means that it is not a viable task to do hand-tagging or make recordings of
humans reading each text, as is often a better choice for making more static text
available for listening.

4.3 Preprocessing

The first step was collecting the needed data and preprocessing it. I picked a random set
of days from Norsk aviskorpus, spread out over several years, and concatenated the
files. This data had already been preprocessed, with a word to each line. I had to reverse
this process in order to build normal sentences appropriate for syntactic tagging. This
was done with a Perl45 script46.

The main problem was that punctuation was on separate lines. Words on each
line could simply be put next to each other with a space between, but if this was applied
to punctuation, the result would be sentences such as "Hurry up , he said ." where the
original text most likely was "Hurry up, he said."

The file was read, and the following was applied, using regex47 search-and-
replace:

• Lines not containing a number were removed

• Lines consisting of aviskorpus codes or patterns matching typical headings were

42 Norsk aviskorpus: http://avis.uib.no/
43 Avdeling for kultur, språk og informasjonsteknologi (Section for culture, language and information

technology) at Bergen University
44 Prosjekthistorikk og finansiering: http://avis.uib.no/project.page
45 Perl is a high-level interpreted programming language especially well suited for text manipulation. It

was originally written by Larry Wall and developed further by him and a large number of volunteers.
Perl is open source and free software. See http://www.perl.org/

46 Script: avk02.pl
47 Regular expressions, or regexes, are text strings describing search patterns. A large number of

different types of wildcards and similar operators are available for finding such things as the start of a
string, the end of a string, a pattern of exactly x characters, a pattern limited to certain types of
characters and so on.

40

http://www.perl.org/
http://avis.uib.no/project.page
http://avis.uib.no/

removed

• Remaining codes were removed from the line

• Space was removed from after a hyphen if the hyphen did not have a space
character before it

• Space was removed from after (, [and {

• Space was removed from before the following characters:)] } . , ! : ;

• Space was removed after " and before " in a balanced pair

• Line-final whitespace was removed

10.000 random lines were then printed to a file and run through the Oslo-Bergen tagger.

4.4 Syntactic tagging

The syntactic tagging was done using the Oslo-Bergen tagger48. This is a constraint
based tagger, based on the Constraint Grammar framework originally written by Fred
Karlsson49.

A constraint grammar consists of a set of declarative constraints on words and
syntax. It works bottom-up, and takes morphologically analyzed word forms as input.
The constraints can operate on the word itself or on the features from the morphological
analysis, such as part-of-speech, tense and case. The output is a linear structure of
words annotated with syntactical and morphological information. Ideally the output is
fully disambiguated, but in case of unresolvable ambiguity each word may have more
than one annotation.

This structure is especially well suited for the task at hand. The other prevalent
output structure from parsers is the parse tree, realized as a set of possible trees, one for
each possible reading of the sentence. Using such a structure would result in
redundancy and a more complicated task in adding say-as markup to the tagged text.

The Oslo-Bergen tagger was originally written by Lingsoft, but the tagger is
available for use in research50. The Norwegian version was developed by
Dokumentasjonsprosjektet and Tekstlaboratoriet at UiO and Aksis at UiB, but large
parts of the tagger has since been rewritten by Aksis.

The tagger consists of three parts: The preprocessor, the multitagger and the
disambiguator. The preprocessor is a tokenizer, finding word and sentence limits. The
multitagger tags the words with morphological information, using information from
Norsk ordbank and a compound analyzer. The disambiguator then removes
incompatible tags based on morphological and syntactic declarative constraints.

48 En grammatisk tagger for norsk (bokmål): http://www.hf.uio.no/tekstlab/tagger2.html
49 Fred Karlsson – Constraint grammar as a framework for parsing running text, 1990
50 Oslo-Bergen-taggeren (for bokmål og nynorsk): http://decentius.hit.uib.no:8005/cl/cgp/test.html

41

http://decentius.hit.uib.no:8005/cl/cgp/test.html
http://www.hf.uio.no/tekstlab/tagger2.html

4.5 Semantic tagging

The semantic tagging with say-as was done by the help of PHP51 and a MySQL52
database. The first step was getting the data into the database. The database had a single
table with five fields:

CREATE TABLE sentences (

id int(5) NOT NULL auto_increment,

sentence text,

done tinyint(1),

skip tinyint(1),

newsentence text,

PRIMARY KEY (id)

);

id is a unique number assigned to each sentence, in order to tell them apart. Sentence is
the original sentence as it appears in the corpus. Done is a boolean value that is set to
true when the sentence has been tagged with say-as. If the sentence turned out to be
useless (not containing any numbers, or containing control codes etc. that slipped
through the preprocessing stage) skip is set to true. Newsentence contains the sentence
complete with say-as tags.

The input format was an XML file. The file was processed by a PHP script
taking each sentence and putting it into a row in the database, with all XML markup
intact53.

The database was then utilized by another program54, giving a graphical user
interface for the manual part of the process:

51 PHP is a recursive akronym which stands for PHP: Hypertext Preprocessor (originally Personal Home
Page tools). As the name suggests, it is a scripting language designed for integration with HTML and
other SGML and XML languages. It is well suited for developing web applications, which made it an
obvious choice for the web-based user interface of my tagger. See http://www.php.net/

52 MySQL is a very popular open source database. It has a dual license – commercial and GPL. If you
use MySQL in a closed source application, you may purchase a commercial license. MySQL is
available for free if you use it in an application licensed with a GPL compatible license, which the
software developed in this project will be. One of the main advantages of using MySQL today is that
nearly all relevant tools has integrated support for it, making it straightforward to use with
programming languages such as PHP. See http://www.mysql.com/

53 Script: init.php
54 Scripts: tagger.php and saver.php

42

http://www.mysql.com/
http://www.php.net/

Given that the input was still XML, it would seem sensible to use an XML parser for
the remaining processing. However, after some deliberation, I realized that for my
purposes this was not needed and would do nothing but add complexity to the script.
Instead, the sentence was split into an array with one element or text node per item,
keeping the markup intact.

For each text node that contains numbers, the script prints a line in an HTML
form, offering a dropdown to choose between the nine possible values of
interpret-as, as well as a tenth option, "unknown". Two text input fields are also
printed, one for the format attribute and one for detail.

In order to automate the tagging as much as possible, the most likely choice in
the dropdown is pre-selected, based on the format of the numerical expression:

1) If it matches a date format with / as the separator, guess date

2) If it contains / and did not match the date format, guess fraction

3) If it matches a date format with – or . as separators, guess date

4) If it contains digits, then a hyphen, then digits, guess score

43

5) If the number starts with +, guess telephone

6) If it matches a time format with : or . as separators, guess time

7) If it contains am, pm, a.m or p.m, guess time

8) If it contains a . followed by end-of-string, guess ordinal

9) If it contains alphabetic characters, guess characters

10) If it is a four-digit number between 1920 and 2050, guess date

11) If it only contains digits with optional . or , separator characters, guess cardinal

12) Failing all of the above, select unknown

JavaScript could have been used to fill in the most likely values of the format and detail
fields based on the current numerical expression and the selection of interpret-as.
However, that would introduce a higher risk of errors because it would require too little
manual intervention and thus less attention. Such a mechanism would however be
trivial to implement should it be desired.

At the bottom of the form are two buttons: "Save" and "Skip". Clicking Skip
simply writes a value of 1 to the database field Skip for the row in question. This is
used for numerical expressions with no context and sentences which did not contain any
numerical expressions – something that happened because the Oslo-Bergen tagger uses
a different way of splitting a line into separate sentences than the method used in Norsk
aviskorpus.

Clicking Save sends the form data along with the sentence's id to a new script.
The data is assembled, combining the values for each row in the submitted form with
the numerical expression they describe. The new entries are then inserted into the
complete sentence, and the sentence is written to the "newsentence" field in the
appropriate row in the database, along with a value of 1 for "done". The browser is
redirected back to the tagger script, which fetches the next sentence which does not
have either of the done or skip flags set.

The tagging process does not output the say-as markup exactly as it would be
used in an SSML document intended for end-users. The main deviation is that the tag is
inserted around the entire word, so that "1980-tallet" ends up as <say-as
interpret-as="date" format="y">1980-tallet</say-as> rather than the
more correct <say-as interpret-as="date" format="y">1980</say-
as>-tallet. Given that the markup will be extracted from the expression in order to run
it through memory learning, I chose not to spend time on this detail – it is simply not
relevant in the context.

The two most common types of expressions marked up as "unknown" were
ranges and durations of time, common in sports results.

44

5 Memory based learning

5.1 Introduction

This chapter describes how a memory based learning algorithm is applied to the
collected, tagged data. The first section gives an introduction to memory based
learning. Subsequent sections describe the data and methods used, and the results are
presented.

The main aim of this memory learning experiment is to find out whether
memory learning is a viable method for use in predicting the semantic category of
numerical expressions for the purpose of speech synthesis. In this process, I will also
look at what kind of information is necessary and optimal for predicting the category.

The process in this chapter is outlined in the flowchart below:

45

XML with say-as
extracted

from database

(fetchdbentries.php)

Relevant data from
XML extracted and

transformed to
TiMBL-readable

CSV format

(xmltocsv.pl)

CSV split into 10
files for 10-fold
cross-validation

(unix: split)
Memory based learning

(TiMBL)

confusion matrix
output normalized

(confusion-matrix.pl)

Averages
calculated

(StarOffice Calc)

Result files with
real and predicted

class

Analysis

5.2 About MBL

5.2.1 Basics

Memory based learning is founded on the hypothesis that performance in
cognitive tasks is based on reasoning on the basis of similarity of new
situations to stored representations of earlier experiences, rather than on
the application of mental rules abstracted from earlier experiences
(Daelemans et al. 2004)

Many natural language processing applications are based on rules and heuristics trying
to mimic the decision processes of the brain. Some researchers argue that this is not a
viable method for processing unrestricted text, because it is not the way the brain
works. Memory based learning, they hypothesize, may be better at capturing the
processing in the brain and thus provide better accuracy and adaptability to new
situations. With MBL, it is not necessary to discover and write rules for every little sub-
regularity and exception. This is, however, not only a strength. While MBL may
provide us with better natural language processors and let us study some linguistic
phenomena from new and interesting angles, other linguistic phenomena are obscured.
It is not easy to study what the learner discovers. Thus, it is hard to study and learn
about the very sub-regularities that MBL helps us handle55.

There are, basically, two modes of machine learning: supervised and
unsupervised56. Memory based learning is a supervised method. You start with a set of
pre-defined answers, carving up the domain. Unsupervised learning, on the other hand,
starts only with the input data and no pre-defined categories, though it may be given
hints about the kind of models it should form. An unsupervised learning algorithm
typically finds clusters of input patterns that belong together, organizing itself rather
than grouping data according to a pre-defined organization57.

For the task at hand, control over the output categories is wanted. In order to
implement speech synthesis systems that support semantically tagged numerical
expressions, the semantic categories need to be clearly defined. Therefore, supervised
learning is a good choice.

As mentioned, a memory learning algorithm needs to be provided with material
to learn from – examples of the input with the correct answer included. When the
learning phase is over, you feed it input in the same format, but with the answers
removed. Based on a measure of similarity, the memory learning application predicts
the correct answer by comparing the input to the instances it has learned from.

The Tilburg Memory-Based Learner (TiMBL)58 was chosen as the memory

55 G. Skantze - Transformation-based and Memory-based Learning for Detecting Speech Recognition
Errors (year?)

56 Jurafsky & Martin – Speech and Language Processing (2000), p118
57 Peter Dayan, Unsupervised Learning
58 Tilburg Memory-Based Learner

46

based learning application for this project. It was chosen over The University of
Waikato's WEKA59 because TiMBL can read the C4.5 data format, which requires no
headers describing the relations. This makes it more elegant and easier to handle than
WEKA's ARFF format, especially when features have large numbers of possible
values. TiMBL runs on the command line.

There are many ways of measuring similarity, and what is the most accurate
measure varies with the input data. TiMBL provides several different distance metrics,
described in the TiMBL Reference Guide, chapter 5.1. They are briefly presented
below.

The most basic is Overlap, where the distance between two patterns is the sum
of the differences between the features. It simply counts the number of matching values
and chooses the best match. This is a simple measure, and error-prone when the
frequencies of the classes to be predicted are uneven.

The Information Gain metric attempts to overcome this problem by computing
how much information each value contributes to the knowledge about the class label.
Thus, some values are weighted heavier than others and are considered more important
when the values are matched. This prevents values with low frequency but high
informativity from drowning in the average.

However, Information Gain has problems with generalization. The importance
of features with many different values is overestimated compared to features with few
different values. A feature with unique values will be very closely linked to the
classifier in each instance, but useless for predicting new instances. The Gain Ratio
metric attempts to overcome this by normalizing the measure for features with different
number of values. The Chi-square metric improves on Gain Ratio by correcting for
number of degrees of freedom.

The above distance metrics all do exact matching on feature-values. This
method does not necessarily detect all similarities in the data – some possible values
may be closer than others. In the numerical expressions domain, not all numbers are
used in a cardinal sense, and the value may in fact be an empty string, so it does not
make sense to treat the feature as numerical. But it is still useful to be able to say that 1
and 2 are closer than 1 and 1400. The Modified Value Difference Metric, MVDM, looks
at co-occurrence of values with target classes in order to determine the similarity of a
feature's values.

Memory based learning can be applied both for practical purposes, in language
engineering applications, and theoretically, for exploring theories in linguistics and
psycholinguistics.

5.2.2 Memory based learning in language engineering
applications

Why are memory based learning models interesting for natural language processing
applications?

Human language is in its nature fuzzy. It is hard to find good rules to cover all

59 Weka Machine Learning Project: http://www.cs.waikato.ac.nz/~ml/

47

http://www.cs.waikato.ac.nz/~ml/

cases, and especially hard to generalize to new, previously unseen content. Because
language changes continuously, this is a serious shortcoming of rule-based systems.
Memory based learning is one way to overcome this problem.

The main feature of memory based learning is perhaps its robustness. MBL is
designed to handle new, unknown content and make best guesses based on what it
already knows. This makes it well suited to deal with new situations.

It is also easy to get started with. Though the system needs to be presented with
a reasonably large selection of examples with answers to learn from, this process is
substantially less work-intensive (and knowledge-intensive) than the careful crafting of
hundreds or even thousands of rules to cover all possible cases. The learning process is
very fast, since it is "lazy" – no processing is done, the examples are simply stored in
memory for future reference60.

If there is a large amount of data, the computational price of classification may
be high. This is because the input needs to be compared to every instance stored in
memory. This problem can partly be overcome by using more efficient indexing instead
of just storing each instance in a flat file61.

Depending on the nature of the data to be classified, a memory based system
may be less accurate than a rule-based one. The accuracy of MBL depends on the
amount of data it has to learn from, but also on how well the data can be grouped. The
more fragmented the data is, the more exceptions there are, the less accurate the MBL
system will typically be.

Memory based learning has been applied to a large number of different tasks
within linguistics, such as part-of-speech tagging62, named entity recognition63,
morphological analysis64 and more.

5.2.3 Supporting linguistic theories with memory learning
results

Memory based learning can also be used to investigate theories in linguistics. Based on
the regularities and sub-regularities found in the data, a theory may be supported,
rejected or altered. A good example of this is the work done on acquisition of stress in
Dutch by Daelemans et al65. They compare the learning results to metrical theory of
stress assignment. Based on their work I have performed similar experiments for
English in a past project66.

The interesting factor is that the learning algorithm has no a priori knowledge
about the domain or any specific theory. Thus, it is interesting to compare the learner's
results to the "rules" typically found in a theoretical framework. One can experiment
with different encodings, leaving out certain parts of the data etc. in order to find what

60 TiMBL Reference Guide, 19
61 TiMBL Reference Guide, 27pp
62 A memory-based part of speech tagger generator, Daelemans et al. (1996)
63 Memory-based named entity recognition using unannotated data. De Meulder et al. (2003)
64 Memory-based morphological analysis, Van den Bosch et al. (1999)
65 The Aquisition of Stress: A Data-Oriented Approach, Daelemans, W., Gillis, S., & Durieux, G. (1994)
66 Computer learning of stress assignment in English: http://epistel.no/dasp/eira/dasp303/

48

http://epistel.no/dasp/eira/dasp303/

information is important and what is irrelevant in order to determine the category. This
information might again be used to alter the rules to better match the data – new factors
may be discovered, or known factors rethought.

It is of course vital that the data being tested is not unnecessarily simplified. In
order to be a meaningful complement to a theoretical framework, irregularities must be
taken into account. If the data is simplified before the learning process, they are in
effect being adapted to a known theory, and so cannot be trusted to provide an unbiased
look at the domain. Daelemans mention this as a problem of the research on stress
assignment by Dresher & Kaye (1990).

5.3 Data

As noted earlier, the data is based on corpus data from Norsk aviskorpus. A newspaper
based corpus was chosen for several reasons. First of all, newspapers are a very
realistic use case for speech synthesis. Additionally, the text is rapidly produced and
updated, which means that the more of the process that can be automated, the better.

Numerical expressions also have a more prominent place in newspaper text than
in many other genres, such as fiction. News commonly contains dates, times, sports
scores and similar, which are essential to the text.

However, the choice of a limited domain does, almost inevitably, lead to a
skewed data set. The frequency of dates, times and sums of money (here treated as
cardinal numbers) will be high, and the dates and times will often have a more formal
and uniform format than they would in a wider domain. One example is the lack of
dasp:date in the dataset. The dasp:date format (d/m -y) was found in the initial
corpus data, which was based on a wide domain, but was not found in the newspaper
texts. dasp:fraction was also very infrequent.

Since the data is limited to a single language, some formats will be significantly
more common than others. This need not be a very important drawback, since the
language of a text to apply memory learning on in a real-world application can be
assumed to always be known. The data has not been sorted or edited beyond the
preprocessing described in the previous chapter. It contains all the irregularities present
in the underlying corpus data.

The underlying data contains three classifiers: the main classifier
interpret-as, and the two sub-classifiers format and detail, whose values
partly depend on interpret-as. For this experiment, I chose to omit format and
detail. This decision has an empirical and a technological reason. The empirical reason
is to keep the data simple in the first pass, in order to find basic problems before trying
to make a more fine-grained division. The technological reason is that current memory
learning software lack the option to learn more than one classifier. There are ways
around this problem – one possible approach is to use the output of one learning phase
as input to another. Exploring such approaches is left to later experiments.

49

5.3.1 Encoding

The data was retrieved from the database67 and encoded into 31 fields plus the
classifier68. The data forms four logical blocks:

1. The numerical expression as a string, and its syntactic properties

2. The numerical expression split into fields and separator characters

3. The preceding word and its syntactic properties

4. The following word and its syntactic properties

The complete list of fields is as follows:

1. Numerical expression as string

2. POS

3. Gender

4. Number

5. Definite

6. Case

7. Time

8. Additional modifiers (kvant/prop)

9. Numerical value 1

10. Separator 1

11. Numerical value 2

12. Separator 2

13. Numerical value 3

14. Separator 3

15. Numerical value 4

16. Word-1 as string

17. POS

18. Gender

19. Number

20. Definite

21. Case

67 Script: fetchdbentries.pl
68 Script: xmltocsv.pl

50

22. Time

23. Additional modifiers

24. Word+1 as string

25. POS

26. Gender

27. Number

28. Definite

29. Case

30. Time

31. Additional modifiers

32. Interpret-as (classifier)

The most problematic aspect of the encoding is the set of numerical fields, fields 9 to
15. Memory learning is done by comparing the same fields in each line. This
comparison will break when the date "10.12.2005" is encoded with "10" in the first
field, and the date "2005" is also encoded into the first field, though we would have
wanted to compare it to the first date's fifth field.

Solving this problem is not straightforward. Sorting the content into the correct
fields based on content type (the classifier) cannot be done, since the idea is to learn the
classifier from the data, not the other way around.

One option is to copy the contents of the first numeric field into all four numeric
fields if the expression is a single number69. This would mean that years would be
compared to years, but it also introduces noise. There is still a difference between these
lines and the regular lines with multiple number fields, since the lines with copied
fields do not contain separator characters. But in the above example, the advantage of
getting to compare 2005 to 2005 is gained at a cost of also having to compare 12 to
2005 – and, of course, we also still have to compare 10 to 2005. Some tests with this
encoding were performed.

Another option is to copy lines, instead of fields. For the single number 2005,
four lines would be generated – one with "2005" in field 9, one using field 11, one
using field 13 and one using field 15. This solution has the drawback of severely
skewing the frequency of lines with single fields, in addition to introducing three
"wrong" lines for every line with the number in the correct field. The advantage is that
the correct line itself would have no noise. Tests with this encoding were left to a later
experiment.

The table below shows TiMBL's statistics for the encoded file. The first column
shows the number of the field, and corresponds to the list of fields above. The second
column, Vals, shows the number of unique values that field has. The third and fourth
columns show a measure of how informative the field is with, respectively, the
Information Gain and Gain Ratio weighting methods. The higher the number, the more
informative the field is interpreted to be.

69 Script: copysingles.pl

51

Feats Vals InfoGain GainRatio

1 2537 2.0017238 0.20652592

2 6 0.44968515 0.38505992

3 4 0.028095013 0.073623341

4 3 0.12044934 0.14310504

5 3 0.014706972 0.038337164

6 2 0.0035038892 0.091731388

7 4 0.0010653701 0.15917935

8 3 0.28514022 0.29927714

9 576 0.96192783 0.13840452

10 6 0.70372139 0.46513637

11 197 0.59254435 0.22338933

12 6 0.087776969 0.33483462

13 58 0.10097836 0.27243386

14 5 0.0048867542 0.35566297

15 3 0.0011720665 0.33813560

16 1317 1.1151112 0.15314819

17 10 0.45437288 0.16947170

18 4 0.047171246 0.053541333

19 3 0.055570293 0.057815802

20 3 0.027930550 0.042386289

21 4 0.0046398567 0.042805680

22 6 0.043281271 0.067761941

23 3 0.068763485 0.096547666

24 1428 1.2303397 0.16730194

25 12 0.23052458 0.11166742

26 4 0.26663026 0.20088102

27 3 0.26485994 0.22280589

28 3 0.24336509 0.23309929

29 4 0.0051361137 0.055019774

30 6 0.024189264 0.063598423

31 3 0.12467842 0.20701825

52

5.4 Tests

Below is an overview over the tests run in TiMBL, and a short introduction to them.
The outcomes and more detailed analysis of the tests are described in the next section.

Test # Description

1 All features on, overlap metric

2 All features on, MVDM metric

3 String, syntax and numerics on, context off, MVDM

4 String, numerics and context words on, all syntax off, MVDM

5 String, numerics and context words on, all syntax except POS off, MVDM

6 Numerics and syntax on, string and context words off, MVDM

7 All fields on except numerics, MVDM

8.1 Only numerics on, MVDM

8.2 Only numerics on, overlap

9.1 Only the string, MVDM

9.2 Only the string, overlap

10 Only the string and its syntax, MVDM

11 The string, its POS and numerics, MVDM

12 The string's POS and numerics, no context, MVDM

13.1 As 5, but with single numbers copied to all number fields

13.2 As 11, but with single numbers copied to all number fields

The MVDM metric was chosen for most of the tests, because important parts of the data
is believed to benefit from a measure of similarity that is more fine-grained than exact
matching. Dates and times have more or less fixed value boundaries, and in order to
separate these categories from others, it is useful to treat 10 as more similar to 12 than
to 90, instead of seeing all the values as completely separate entities. Some tests were
performed using the default overlap metric as a control.

The natural first step is to run a test with all features on. That was done in tests 1
and 2. The subsequent tests have certain fields turned off, to investigate how the
presence and absence of various kinds of information, such as context and syntactical
details, affect the outcome. With 30 different features it is of course not a viable
solution to test all possible combinations. The features form partly overlapping groups
of related information, and tests were run with various combinations of these groups.

In test 3, all context is turned off. In test 4, the context words are turned on, but
all syntactical details are off. Test 5 is identical except that part-of-speech is turned on.
In Test 6, all syntactical details are on, but the words are off, including the numerical
string itself. However, the numerical data is still present in the numerical value fields.

53

In test 7, the numerical value fields are turned off, but all other fields are on.

Tests 8 and 9 have quite minimal amounts of data, respectively only the
numerical string and only the numerical value fields. In test 10 the syntactical details of
the string is added. Test 11 combines the numerical string, the numerical value fields
and the string's part-of-speech, while test 12 leaves out the string itself, leaving only the
part-of-speech and the numeric value fields.

Tests 13.1 and 13.2 are identical to previous tests, but performed on slightly
different data. In these tests, if only the first numerical value field contained data, and
the other numerical value fields did not, the contents of the first field were copied to the
other.

5.5 Results

In this section the results from the memory based learning are presented. I will present
some different ways of looking at the data, and go into more detail about some parts of
the results.

54

5.5.1 Averages

Below is a summary of the results, with averages for each test run.

Test # % Description

1 93 All features on, overlap metric

2 95 All features on, MVDM metric

3 94 String, syntax and numerics on, context off, MVDM

4 94 String, numerics and context words on, all syntax off, MVDM

5 95 String, numerics and context words on, all syntax except POS off,
MVDM

6 94 Numerics and syntax on, string and context words off, MVDM

7 92 All fields on except numerics, MVDM

8.1 85 Only numerics on, MVDM

8.2 84 Only numerics on, overlap

9.1 86 Only the string, MVDM

9.2 86 Only the string, overlap

10 87 Only the string and its syntax, MVDM

11 94 The string, its POS and numerics, MVDM

12 93 The string's POS and numerics, no context, MVDM

13.1 95 As 5, but with single numbers copied to all number fields

13.2 94 As 11, but with single numbers copied to all number fields

Table 4: Summary of memory learning averages

The scores range from 84 to 95 percent accuracy, forming two distinct groups: One
group with results ranging from 84 to 87 percent, and the other ranging from 92 to 95
percent. The distance between the groups (5 points) is larger than the internal distance
between the results in each group (3 points in both).

As we can see, the scores for test runs 8 and 9, numerics-only and string-only,
are very close and make up most of the lower-score group. The similar score is to be
expected since the two tested field groups contain roughly the same data, only encoded
differently. However, for strings that contain other symbols than numbers and separator
characters, those other symbols (normally alphabetic characters) are not included in the
numeric encoding. This may account for the slightly better accuracy of the string-only
test run. That these tests only have about 85% accuracy is a clear sign that some kind of
context is important for correctly classifying numerical expressions. Looking only at the
numerical expression itself is not enough.

Two tests achieve a score of 95 percent – tests 2 and 5. Test 2 includes all
features, while test 5 excludes syntactical details except part-of-speech. This suggests
that other syntactic data than part-of-speech are irrelevant. Given that test run 5 ties for

55

the first place based on less information than its competitor, it will be considered the
best test result.

Including POS only improves accuracy a little bit compared to no syntax, test
run 4. This is good news for use in applications, because it eases the task significantly
if one does not have to parse the text syntactically to determine the semantics of
numbers.

Good results were also achieved when ignoring all context, provided that the
part-of-speech was included, test run 11. In fact, the score is the same when including
POS but excluding context, as when excluding POS and including context. Including
both only marginally improves the results, but excluding both leads to a significant
drop in accuracy.

The format of the string does play a significant role when context is ignored.
Comparing test runs 3 and 10 shows that just by ignoring the features containing the
string split in numbers and separator characters, accuracy drops from 94% to 87%.
However , if both syntax and context are present, accuracy is back to 92% (test run 7).
In other words, the importance of the three feature groups context, syntax and string
format are highly interrelated.

In test run 5, 2825 out of 7913 correctly classified instances were exact matches.
That is a relatively high number (36%, approximately one third), but it is important to
notice that two thirds of the correctly classified instances were not exact matches. This
shows that the learner is able to generalize.

5.5.2 Weighting

The best and one of the second-best options were tested with various weighting
methods:

% Weighting method

95 Gain ratio

95 No weighting

94 Info gain

94 Chi square

Table 5: String, numerics, context words and POS, various weighting (based on test run 5)

56

% Weighting method

94 Gain ratio

94 No weighting

94 Info gain

94 Chi square

Table 6: String, POS and numerics, no context, various weighting (based on test run 11)

The lack of variation in accuracy reveals that the data are not particularly sensitive to
the weighting method.

5.5.3 Confusion matrix

A confusion matrix is an overview over predicted and real classes, displayed in a
table70. This is the matrix for the best test run:

time cardinal date dasp:score ordinal characters telephone unknown dasp:fraction

time 755 13 10 0 0 0 0 4 0
cardinal 23 4423 34 0 49 25 4 5 0
date 6 34 1258 3 1 1 1 3 2
dasp:score 0 0 0 334 0 2 0 11 0
ordinal 0 45 0 0 700 6 0 4 0
characters 1 47 4 1 5 129 0 6 0
telephone 0 12 5 0 0 0 98 0 0
unknown 3 24 25 9 5 3 0 213 0
dasp:fraction 0 0 0 0 0 0 0 0 3

Table 7: Confusion matrix for test run 5 (accuracy: 95%)

The table shows the real class horizontally, and the predicted class vertically. Ideally,
they should match perfectly, giving a diagonal from top left to bottom right with
numbers, and zeros in all the other fields. When the learner makes a mistake, the error
can be found in the intersection between the real and the predicted class.

The confusion matrix is useful for finding out which classes are particularly
problematic for the learner. For instance, the table above shows that ordinals are often
mistaken for cardinals. This is not surprising, since ordinal numbers that lack a dot look
exactly like cardinal numbers. Information about part-of-speech and format is not

70 The script confusion-matrix.pl was written to format the output from TiMBL to a table that could be
imported into a spreadsheet

57

enough to disambiguate.

From this information, a hypothesis can be made that the recognition of ordinals
is more accurate with context on than off, since context is the factor that differs the
most between cardinal and ordinal. Below are the confusion matrices for test runs 2
and 3, with and without context. These test runs were chosen because they are maximal,
with no data group other than context manipulated. This is important because, as shown
earlier, leaving out more than one group of information causes a drop in performance
regardless of which two groups are removed.

time cardinal date dasp:score ordinal characters telephone unknown dasp:fraction

time 755 14 9 0 0 0 0 4 0
cardinal 17 4438 29 0 47 23 4 5 0
date 6 33 1262 3 1 0 1 3 0
dasp:score 0 1 1 337 0 0 0 8 0
ordinal 1 42 0 0 704 5 0 3 0
characters 1 51 3 0 6 125 1 6 0
telephone 0 14 4 0 0 0 97 0 0
unknown 3 25 24 9 2 8 0 211 0
dasp:fraction 0 1 0 0 0 0 0 0 2

Table 8: Confusion matrix for test run 2 : context included (accuracy: 95%)

time cardinal date dasp:score ordinal characters telephone unknown dasp:fraction

time 728 42 11 0 0 1 0 0 0
cardinal 8 4480 27 0 4 26 6 12 0
date 3 57 1235 2 0 2 4 6 0
dasp:score 0 0 1 330 0 0 0 16 0
ordinal 1 73 0 0 675 3 0 3 0
characters 2 53 2 0 2 128 0 6 0
telephone 0 40 3 0 0 0 72 0 0
unknown 2 25 12 14 3 5 0 220 1
dasp:fraction 0 0 0 0 0 0 0 0 3

Table 9: Confusion matrix for test run 3: context excluded (accuracy: 94%)

Comparing these two tables, we can see that when context is included, 42 numbers that
are really ordinal are mispredicted as cardinal, whereas 47 numbers that are really
cardinal are mispredicted as ordinal. When context is excluded, 73 numbers that are
really ordinal are mispredicted as cardinal, while only 4 numbers that are really cardinal
are mispredicted as ordinal. This supports the hypothesis. The number of ordinals

58

mispredicted as cardinal went down from 73 to 42 if context was included. However,
this is at a cost: Cardinals misinterpreted as ordinal went up from 4 to 47!

As mentioned, the numerical fields are a source of trouble. One proposed
solution was to copy single values to all numerical fields, thus ensuring that
corresponding parts of a number are compared. The tables below show the results of
these experiments:

time cardinal date dasp:score ordinal characters telephone unknown dasp:fraction

time 755 13 10 0 0 0 0 4 0
cardinal 23 4423 34 0 49 25 4 5 0
date 6 34 1258 3 1 1 1 3 2
dasp:score 0 0 0 334 0 2 0 11 0
ordinal 0 45 0 0 700 6 0 4 0
characters 1 47 4 1 5 129 0 6 0
telephone 0 12 5 0 0 0 98 0 0
unknown 3 24 25 9 5 3 0 213 0
dasp:fraction 0 0 0 0 0 0 0 0 3

Table 10: Confusion matrix for test run 5 (accuracy: 95%)

time cardinal date dasp:score ordinal characters telephone unknown dasp:fraction

time 714 54 12 0 0 1 0 1 0
cardinal 6 4454 35 0 31 22 3 12 0
date 4 62 1227 2 0 4 4 6 0
dasp:score 0 0 1 330 0 2 0 14 0
ordinal 0 85 0 0 666 2 0 2 0
characters 1 78 2 1 5 101 0 5 0
telephone 0 41 2 0 0 0 72 0 0
unknown 2 24 13 14 4 1 0 223 1
dasp:fraction 0 0 0 0 0 0 0 0 3

Table 11: Confusion matrix for test run 13.1 (same parameters as test run 5, but with copied fields.
Accuracy: 95%)

59

time cardinal date dasp:score ordinal characters telephone unknown dasp:fraction

time 724 45 12 0 0 0 0 1 0
cardinal 5 4468 31 0 20 21 6 12 0
date 4 57 1232 2 0 4 4 6 0
dasp:score 0 0 1 330 0 2 0 14 0
ordinal 0 78 0 0 673 2 0 2 0
characters 1 57 2 1 3 123 0 6 0
telephone 0 41 2 0 0 0 72 0 0
unknown 2 24 13 14 4 1 0 223 1
dasp:fraction 0 0 0 0 0 0 0 0 3

Table 12: Confusion matrix for test run 11 (accuracy: 94%)

time cardinal date dasp:score ordinal characters telephone unknown dasp:fraction

time 727 47 7 0 0 0 0 1 0
cardinal 5 4469 31 0 18 22 6 12 0
date 6 56 1233 2 0 1 5 6 0
dasp:score 0 0 1 328 0 2 0 16 0
ordinal 1 77 0 0 674 1 0 2 0
characters 1 57 2 1 3 123 0 6 0
telephone 0 41 2 0 0 0 72 0 0
unknown 2 23 14 16 3 2 0 222 0
dasp:fraction 0 0 0 0 0 0 0 0 3

Table 13: Confusion matrix for test run 13.2 (same parameters as test run 11, but with copied fields.
Accuracy: 94%)

By looking closer at the date/cardinal intersections, we can determine whether the dates
were less likely to be misinterpreted as cardinal numbers if single fields were copied. In
test run 5, we see that 34 dates were incorrectly classified as cardinal, and the same
number of cardinals were incorrectly classified as dates. Comparing this result to a test
run with the same parameters on a data file with copied fields, we see that 62 dates
were incorrectly classified as cardinal, while 35 cardinals were incorrectly classified as
dates – in other words a slight drop in accuracy, rather than the expected increase. The
second test pair shows similar results, comparing 57/31 to 56/31.

The only likely explanation for these results is the added noise, which is
significant. For each value in the correct field, there are three values in the wrong
fields.

The most common mistake is that other classes are mistaken to be cardinals.
Given that the frequency of cardinals is much larger than the other classes, this is not
unexpected. The most frequent class will often be most prominent when resolving ties

60

in classification. Additionally, cardinal numbers are often simple numbers with no
separator characters. All the other classes overlap with this format.

In the overview over averages, we saw that the results formed two groups. So
far we have looked at confusion matrices for the good results, but it is also interesting
to take a closer look at the bad results. Below are matrices for test runs 8 (numeric
fields only) and 9 (string only):

time cardinal date dasp:score ordinal characters telephone unknown dasp:fraction

time 709 57 12 0 1 0 0 3 0
cardinal 7 4370 22 0 119 21 3 21 0
date 4 93 1196 2 0 1 5 6 2
dasp:score 0 0 1 326 0 5 0 15 0
ordinal 1 588 0 0 150 16 0 0 0
characters 1 123 1 2 33 27 0 5 1
telephone 0 41 2 0 0 0 72 0 0
unknown 5 27 14 14 1 0 0 221 0
dasp:fraction 0 0 0 0 0 1 0 0 2

Table 14: Confusion matrix for test run 8 (accuracy: 85%)

time cardinal date dasp:score ordinal characters telephone unknown dasp:fraction

time 322 454 6 0 0 0 0 0 0
cardinal 2 4532 20 0 0 3 6 0 0
date 2 207 1094 1 0 0 4 1 0
dasp:score 0 50 0 296 0 0 0 1 0
ordinal 0 99 0 0 656 0 0 0 0
characters 1 98 0 0 0 92 0 2 0
telephone 0 42 1 0 0 0 72 0 0
unknown 0 188 2 6 0 1 0 85 0
dasp:fraction 0 1 0 0 0 0 0 0 2

Table 15: Confusion matrix for test run 9 (accuracy: 86%)

Both perform equally badly, having too little information available to distinguish
between different classes. But the errors made are noticeably different. The test run
with only numeric fields is very confused about ordinals, misinterpreting 588 ordinals
as cardinals. As already demonstrated, this task is a difficult one when context is not
available. Thus, the result is not surprising. However, the test run with only the string
performs much better classifying the ordinals. Instead, it mistakes times for cardinals. A
possible reason for this is that the fields in times are not separated into several fields,

61

but instead presented to the learner as a single chunk. This theory is supported by the
fact that the second most frequent error is that dates are mistaken for cardinals. Dates
and times are the categories that most frequently consist of several fields.

5.5.4 Specific errors

So far we've looked at the accuracy averages, showing overall performance, and the
confusion matrices showing the amount of errors per category. It can be useful to dig
even deeper and take a closer look at the specific errors that occur, especially those that
are frequent. TiMBL provides result files for each test run, showing each input line
with the predicted class at the end. The result file from test run 5 was filtered to leave
only the errors71, and sorted by category. A typical error looks like this:

4-tallet,subst,noyt,ent,be,,,,4,,,,,,,tror,verb,,,,,pres,,er,verb,,,,,pres,,cardinal,characters

There are several similar examples, with words like "21-tiden" and "2-åringen" – all of
them cardinals that are misclassified as character strings. This is an easily
understandable error, given that these words contain many alphabetic characters, a
common feature of character strings. It is not easy for the learner to distinguish between
character strings and cardinals that happen to be connected to a regular word. In a
tagging process, this mistake would cause the tags to be inserted in the wrong place in
addition to having the wrong values. What should be tagged as <say-as
interpret-as="cardinal">4</say-as>-tallet would instead be tagged as
<say-as interpret-as="characters">4-tallet</say-as>.

Among the cardinals misclassified as dates, four-digit numbers between 1900
and 2000 are prevalent. The opposite error is also quite common. This, too, is an
obvious pitfall. Telling a year from a cardinal in the same range is difficult, and
depends heavily on context. Below are some examples:

2000,det,,fl,,,,kvant,2000,,,,,,,maks,,noyt,ent,ub,,,,tegn,subst,noyt,fl,ub,,,,cardinal,date

1944,det,,fl,,,,kvant,1944,,,,,,,i,prep,,,,,,,bare,,,,,,,,date,cardinal

Most of the cardinals misclassified as ordinals and the other way around are simple
numbers without a trailing dot, as the ones below. These are nearly identical, and
cannot be distinguished with the information given here. This suggests that accuracy
may be improved by including a wider context window.

8,det,,fl,,,,kvant,8,,,,,,,c,,,,,,,,),,,,,,,,cardinal,ordinal72

71 Script: finderrors.pl
72 A single c in a field means that the original text contained a comma in that place, which had to be

changed in order to use it in a comma-separated file

62

6,det,,fl,,,,kvant,6,,,,,,,c,,,,,,,,),,,,,,,,ordinal,cardinal

The cardinals misclassified as times are typically two-digit numbers within the range of
a time of day expressed as an hour, such as the one below:

13,det,,fl,,,,kvant,13,,,,,,,Apollo,subst,mask,ent,ub,,,,|,,,,,,,,cardinal,time

An investigation of character strings misclassified as cardinals reveals several strings of
digits only, which is an understandable mistake. But there is also a surprisingly high
number of digit/alphabetic character mixes such as "mp3", "TV2", "3-D" etc. which
show that some research is needed to find out how accuracy could be improved with
regard to acronyms like these.

Among the unknowns, there were a lot of sports times on the
minute.second.hundredth-of-a-second format. These look like times of day, even
though many of them are out of the normal range for times of day:

14.48.97,det,,,,,,kvant,14,.,48,.,97,,,c,,,,,,,,c,,,,,,,,unknown,date

5.6 Summary

We looked at the data, the tests performed, and analyzed results from various angles,
looking at average performance, confusion matrices and specific errors.

As seen, accuracy up to 95% was achieved. Removing the most computationally
expensive part of the process, the syntactic tagging, does not have a significant impact
on the result. Accuracy up to 94% was achieved without any syntactical information.

As expected, the most problematic aspect for the learner is where formats
overlap between categories. Analysis shows signs that more context may be necessary
to improve the accuracy.

63

6 Discussion and conclusion

6.1 Discussion

This project had a double aim. The first aim was to investigate and improve on the
semantic categories suggested in a W3C Working Group Note for numerical
expressions in speech synthesis. The other was to explore memory based learning as a
method for applying the above categories to numerical expressions in running text.

Norwegian and English corpus data was examined to give an empirical basis for
the categorization. We saw that the six pre-defined categories for a large part covered
the data they were designed for, though some problems were noted. A significant
amount of data was not covered by the pre-defined categories. These examples were
categorized and discussed. A selection was made of which categories to keep in the
further work, based on distribution and relevance, as well as the technical limitations
imposed by SSML.

Some limitations in the selection process should be noted. Only two languages,
Norwegian and English, were covered. As broad international coverage is an aim of
SSML, more languages should be investigated. A related problem is that the data is
limited. It is based on the available numerical expressions in three corpora, and cannot
claim to be comprehensive, though it does in all likelihood give a good indication of
which numerical expressions are most common. Finally, the selection and
categorisation is a subjective process. Though some guidelines were set, the decisions
reflect the opinions and intuitions of one person. This introduces an aspect of "armchair
linguistics" into an otherwise data-driven project. Further studies might benefit from a
more detailed statistical analysis of the frequencies and distribution of various
categories.

The data was further processed before applying memory based learning. There
are potential sources of error in this process. Some assumptions were made when
reversing the one-word-per-line format of Norsk aviskorpus. It is possible that some of
the data was not reversed to it exact original form, especially if the original data had
irregularities in the punctuation. Thus, the data may be slightly more normalized than
the original input to Norsk aviskorpus. It is my belief that this problem is marginal, and
that it does not affect the outcome significantly.

The data was syntactically tagged using the Oslo-Bergen tagger. The result is
only as good as the rules in the automatic tagger. Little documentation of the tagger is
available, and it is outside the scope of this thesis to evaluate the quality of the tagging
process. Given that the results with and with syntactical data included are so similar,
and that for application use it is preferred not to include syntactical data because of the
computational cost, this is not seen as a big problem. The results could theoretically be
improved with better syntactical tagging, but this might in fact be a circular problem. It
is not unthinkable that the syntactical tagging could be improved if the tagger had
knowledge of the semantics of each numerical expression – the knowledge this project
is trying to gain.

Close to ten thousand lines were semantically tagged by hand. Ideally, the

64

training set would be even larger. Ten thousand lines were considered a reasonable
trade-off between practical feasibility and the desire to have a base for generalizing that
is as large as possible.

Occasional errors in such a process are almost inevitable. A closer inspection of
the detailed results file with real and predicted class reveals some lines that are almost
certainly wrongly tagged, and that the learner in fact correctly classified. Some
examples are presented below.

15,det,,fl,,,,kvant,15,,,,,,,klokken,subst,mask,ent,be,,,,den,det,mask,ent,,,,,cardinal,time

This line is tagged as cardinal, though if we combine the context and the numerical
expression we get "... klokken 15 den ...", which indicates that the number is probably a
time. The learner classified it as a time.

12/09/2004,subst,,,,,,,12,.,9,.,2004,,,,,,,,,,,-,,,,,,,,cardinal,date

The sequence "12/09/2004" is almost certainly a date, and definitely not a cardinal
number as it was tagged. The learner classified it as a date.

2000,det,,fl,,,,kvant,2000,,,,,,,på,prep,,,,,,,kroner,subst,mask,fl,ub,,,,date,cardinal

"... på 2000 kroner ..." indicates that the content is a cardinal number, which is what the
learner classified it as. It was however tagged as a date.

The vast majority of inspected lines seem to be correctly tagged. That some errors occur
in the material is unlikely to affect the overall performance significantly.

There is little literature about recognizing and categorizing numerical
expressions in text. Thus, there is not much previous work to refer to as a theoretical
basis for the work done in this thesis. The problem has much in common with the
recognition and categorization of proper names, a topic that has been the focus of
research from several angles. Evaluating the relationship between numerical
expressions and proper names has not been a focus in this thesis, but it is not
unthinkable that research in the numerical expressions domain could benefit from
knowledge about proper name recognition.

It would be interesting to know how existing speech synthesis engines deal with
numerical expressions internally. Several makers of popular synthesis software were
contacted with requests for information, but none replied. Conversations with users of
such software suggested that handling is very basic, and that a string such as "1/2" is
typically read as "one slash two". This means that users of synthesis engines would
benefit from more detailed input data. The work done in this thesis shows that this is a
goal that can be achieved.

65

6.2 Further work

The main problem that remains to be solved is subcategorization. In the context of
SSML, this means inclusion of format and detail. Future projects should look at ways to
include these attributes where applicable. Currently, only the main category is known.
Using dates as an example, it is desirable to also know which parts of the date are
present and how they are ordered. 10.12 could be either day-month or month-day. This
data was included when tagging the texts semantically and is readily available for
future experiments.

This experiment did not include learning of the format and detail attributes.
Learning multiple classifiers in one pass is not an available feature in current memory
based learners. The ideal solution would be to implement a memory learner, or modify
an existing one, to include this feature. That is a complex task, and there may be easier
ways around the problem. A simpler approach is to use output from one round of
learning as input to another. Inclusion of format and detail is a problem that must be
solved before the automatic tagging can be used in real-world applications.

The range category was excluded for technical reasons. As ranges of various
kinds are quite common, it is desirable to take a closer look at this problem. It is
necessary to determine whether the category is really needed, preferably with a wide
selection of languages as a reference. If the decision is that the category is needed, it
must be implemented in a suitable way. As shown in this thesis, this is not
straightforward. The most viable solution is perhaps to modify the SSML specification
to allow nesting of the say-as element under certain, well-defined conditions.

As seen from the learning results, the learner does not always have enough
context available to distinguish between different categories, in particular ordinal vs.
cardinal. Future work should experiment with larger context windows and investigate
whether accuracy can be improved in these areas.

One interesting approach would be to combine memory based learning with
some manually introduced biases. Trigger words, such as "klokken" for times, is one
possibility, though with a sufficiently large training set the memory learner should have
no problems learning these automatically. A more interesting area to include biases for
is the normal ranges typically found in dates and times. Even when using the MVDM
metric that should minimize this problem, the learning results showed that the learner
had difficulties distinguishing between times of day and strings that look like times of
day but really are sports results.

A human would in most cases be able to tell them apart simply because the
sports results are out of range of a normal time of day. A time of day is restricted –
hours range from 00 to 24, minutes and seconds from 00 to 59. A sports result is
usually also restricted, but contains other fields with different limits. A common format
is minutes and seconds both ranging from 00 to 59, and hundredths of a second ranging
from 00 to 99. If the learning algorithm could be told to prefer values within certain
ranges when assigning the time classifier, accuracy could be improved. One would
need to experiment with weighting of the bias to maximize the gain while avoiding
losing too much robustness when it comes to handling unknown content.

Combining memory based learning and manually introduced biases is not
supported in a straightforward way in current memory based learning implementations.

66

Several technical challenges must be met before the idea of introducing biases can be
pursued.

Result files from the preferred test run were analyzed to find patterns in the
specific errors that occurred. These files can also be used to compare different test runs,
in order to find out which combinations of information cause which types of errors.
This information can be used to improve future experiments, and such a comparison
should be considered before using the material for further testing.

Though the work done here is specifically aimed at the domain of speech
synthesis, it is not unlikely that the results can contribute to knowledge about the
semantic classification of numbers in a wider context. Substantial amounts of work
remain before a complete theoretical framework for the domain can be constructed.

6.3 Conclusion

The first aim of this project was to investigate and improve on the semantic categories
suggested in a W3C Working Group Note for numerical expressions in speech
synthesis. It was found that, for Norwegian and English, the suggested categories
largely covered the types of numerical expressions they were designed to cover. It was
also found that the categories did not cover the whole domain of numerical expressions.
New categories were defined to cover additional parts of the domain.

The resulting set of categories must be seen as an improvement over the
previously defined set. The investigation has added to the knowledge of numerical
expressions in an international perspective, by providing examples an analysis of cases
where the W3C defined categories did not cover content in a non-English language, in
this case Norwegian.

The second aim of this project was to explore memory based learning as a
method for applying the above categories to numerical expressions in running text.
Accuracy of up to 95% was achieved, and a number of problem areas were found and
analyzed.

The high accuracy shows that memory based learning is promising as a method
for automatically finding the correct semantic category of a number in running text. The
ability to tag texts automatically means that a much larger amount of texts can be
prepared for speech synthesis with accurate reading of numerical expressions, than if
this work was to be done manually. The main benefit of memory based learning is that
the system can deal with previously unseen content in a more robust way than a rule-
based system would be able to.

67

7 References

7.1 Publications

Chomsky, N. 2002. Syntactic Structures. Second Edition. Mouton de Gruyter, Berlin.

Daelemans, W., J. Zavrel, K. van der Sloot, A. van den Bosch, 2004. TiMBL: Tilburg
Memory-Based Learner Reference Guide. ILK Technical Report – ILK 04-02.

Daelemans, W., J. Zavrel, P. Berck, and S. Gillis. 1996. MBT: A memory-based part of
speech tagger generator, Daelemans et al. In E. Ejerhed and I. Dagan (editors).
Proceedings of Fourth Workshop on Very Large Corpora, pages 14-27. ACL SIGDAT.

Daelemans, W., S. Gillis, and G. Durieux. 1994. The Aquisition of Stress: A Data-
Oriented Approach. Computational Linguistics, 20(3):421-451.

Dayan, P. 1999. Unsupervised Learning. In Wilson, R. A. and Keil, F. C. (editors). The
MIT Encyclopedia of the Cognitive Sciences. Cambridge, MA: MIT Press.

De Meulder, F. and W. Daelemans. 2003. Memory-based named entity recognition
using unannotated data. In W. Daelemans and M. Osborne (editors). Proceedings of
CoNLL-2003, pages 208-211. Edmonton, Canada.

Hurford, J. 1987. Language and Number – The Emergence of a Cognitive System.
Basil Blackwell Ltd.

Jurafsky, D and J. Martin, 2000. Speech and Language Processing – An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall.

Karlsson, F. 1990. Constraint grammar as a framework for parsing running text. In
Hans Karlgren (editor). Papers presented to the 13th International Conference on
Computational Linguistics, Vol. 3. Helsinki, pages 168-173.

Losnegaard, G. 2005. Syntaksen i talluttrykk. Master thesis, University of Bergen.

McDonald, D. 1996. Internal and external evidence in the identification and semantic
categorization of proper names. In B. Boguraev and J. Pustejovsky, editors, Corpus
processing for lexical acquisition, pages 21—39.

Monstad, E. 2003. Computer Learning of Stress Assignment in English.
http://epistel.no/dasp/eira/dasp303/

Olsson, M. 1997. Swedish numerals in an international perspective. Lund University
Press.

68

http://epistel.no/dasp/eira/dasp303/

Ray, E. 2003. Learning XML. O'Reilly.

Skantze, G. Transformation-based and Memory-based Learning for Detecting Speech
Recognition Errors. Available at
http://w3.msi.vxu.se/~nivre/teaching/gslt/ml_papers.html

The American Heritage Dictionary of the English Language, Fourth Edition. 2004.
Houghton Mifflin Company.

Van den Bosch, A. and W. Daelemans. 1999. Memory-based morphological analysis.
In Proceedings of the 37th Annual Meeting of the ACL, pages 285-292, San Francisco,
CA. Morgan Kaufmann.

Wiese, H. 1997. Zahl und Numerale – Eine Untersuchung zur Korrelation
konzeptueller und sprachlicher Strukturen. Akademie Verlag GmbH, Berlin.

7.2 Web sites

All sites last visited January 30 2006.

Ask Dr. Math: http://mathforum.org/library/drmath/view/63884.html

Corpus linguistics: http://ling.uib.no/~desmedt/cursus/corpus/syllabus/intro.html

Definition of a Corpus: http://bowland-
files.lancs.ac.uk/monkey/ihe/linguistics/corpus2/2defin.htm (supplement to the book
Corpus Linguistics, see http://bowland-
files.lancs.ac.uk/monkey/ihe/linguistics/contents.htm)

En grammatisk tagger for norsk (bokmål): http://www.hf.uio.no/tekstlab/tagger2.html

Extensible Markup Language (XML): http://www.w3.org/XML/

Generalized Markup Language:
http://en.wikipedia.org/wiki/Generalized_Markup_Language

HyperText Markup Language (HTML) Home Page http://www.w3.org/MarkUp/

Key words for use in RFCs to Indicate Requirement Levels:
http://www.ietf.org/rfc/rfc2119.txt

Markup language: http://en.wikipedia.org/wiki/Markup_language

Microsoft Office Open XML Formats Overview:
http://www.microsoft.com/office/preview/developers/fileoverview.mspx

69

http://www.microsoft.com/office/preview/developers/fileoverview.mspx
http://en.wikipedia.org/wiki/Markup_language
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/MarkUp/
http://en.wikipedia.org/wiki/Generalized_Markup_Language
http://www.w3.org/XML/
http://www.hf.uio.no/tekstlab/tagger2.html
http://bowland-files.lancs.ac.uk/monkey/ihe/linguistics/contents.htm
http://bowland-files.lancs.ac.uk/monkey/ihe/linguistics/contents.htm
http://bowland-files.lancs.ac.uk/monkey/ihe/linguistics/corpus2/2defin.htm
http://bowland-files.lancs.ac.uk/monkey/ihe/linguistics/corpus2/2defin.htm
http://ling.uib.no/~desmedt/cursus/corpus/syllabus/intro.html
http://mathforum.org/library/drmath/view/63884.html
http://w3.msi.vxu.se/~nivre/teaching/gslt/ml_papers.html

Namespaces in XML: http://www.w3.org/TR/REC-xml-names/

Norsk aviskorpus: http://avis.uib.no/

On SGML and HTML: http://www.w3.org/TR/html4/intro/sgmltut.html

Oslo-Bergen-taggeren (for bokmål og nynorsk):
http://decentius.hit.uib.no:8005/cl/cgp/test.html

Oslo-korpuset av taggede norske tekster (bokmålsdelen):
http://www.tekstlab.uio.no/norsk/bokmaal/

Ratio: http://en.wikipedia.org/wiki/Ratio

Ratio. Fraction. What's the difference?
http://www.sci.tamucc.edu/txcetp/cr/math/rf/RatioFraction.pdf

Recommendation Track Process Maturity Levels: http://www.w3.org/2004/02/Process-
20040205/tr.html#maturity-levels

Reference: ISO8879: http://www.w3.org/TR/html4/references.html

Speech Synthesis Markup Language (SSML) Version 1.0:
http://www.w3.org/TR/speech-synthesis/

SSML 1.0 say-as attribute values: http://www.w3.org/TR/2005/NOTE-ssml-sayas-
20050526/

Standard Generalized Markup Language: http://en.wikipedia.org/wiki/SGML

The LOB Corpus: http://khnt.hit.uib.no/icame/manuals/lobman/LOB1.HTM

The World Wide Web: A very short personal history:
http://www.w3.org/People/Berners-Lee/ShortHistory

Time 100: Tim Berners-Lee:
http://www.time.com/time/time100/scientist/profile/bernerslee.html

Uniform Resource Identifiers (URI): Generic Syntax:
http://www.ietf.org/rfc/rfc2396.txt

W3C Workshop on Internationalizing the Speech Synthesis Markup Language:
http://www.w3.org/2005/08/SSML/ssml-workshop-agenda.html

Weka Machine Learning Project: http://www.cs.waikato.ac.nz/~ml/

World Wide Web Consortium: http://www.w3.org/

www-voice@w3.org Mail Archives: http://lists.w3.org/Archives/Public/www-voice/

70

http://lists.w3.org/Archives/Public/www-voice/2005AprJun/0032.html
http://www.w3.org/
http://www.cs.waikato.ac.nz/~ml/
http://www.w3.org/2005/08/SSML/ssml-workshop-agenda.html
http://www.ietf.org/rfc/rfc2396.txt
http://www.time.com/time/time100/scientist/profile/bernerslee.html
http://www.w3.org/People/Berners-Lee/ShortHistory
http://khnt.hit.uib.no/icame/manuals/lobman/LOB1.HTM
http://en.wikipedia.org/wiki/SGML
http://www.w3.org/TR/2005/NOTE-ssml-sayas-20050526/
http://www.w3.org/TR/2005/NOTE-ssml-sayas-20050526/
http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/TR/html4/references.html
http://www.w3.org/2004/02/Process-20040205/tr.html#maturity-levels
http://www.w3.org/2004/02/Process-
http://www.sci.tamucc.edu/txcetp/cr/math/rf/RatioFraction.pdf
http://en.wikipedia.org/wiki/Ratio
http://www.tekstlab.uio.no/norsk/bokmaal/
http://decentius.hit.uib.no:8005/cl/cgp/test.html
http://www.w3.org/TR/html4/intro/sgmltut.html
http://avis.uib.no/
http://www.w3.org/TR/REC-xml-names/

	1 Introduction
	1.1 Motivation
	1.2 What I will do

	2 Background
	2.1 Numerals
	2.1.1 Definitions
	2.1.2 What are numerals?
	2.1.3 The problem

	2.2 Markup languages
	2.2.1 Standards and standards organizations
	2.2.2 XML
	2.2.3 SSML
	2.2.4 say-as

	3 Defining the semantic categories
	3.1 Formats defined in SSML
	3.1.1 Defined values
	3.1.2 Overview

	3.2 Defining new values
	3.3 Corpora
	3.4 Values defined in the Note
	3.4.1 Ordinal
	3.4.2 Cardinal
	3.4.3 Time
	3.4.4 Date
	3.4.5 Character string
	3.4.6 Telephone

	3.5 Categories found in corpora, but not covered in the Note
	3.5.1 Date
	3.5.2 Range
	3.5.3 Fraction
	3.5.4 Ratio
	3.5.5 Index
	3.5.6 Mathematical expressions
	3.5.7 Score
	3.5.8 Guns
	3.5.9 Issue numbers
	3.5.10 Biblical references
	3.5.11 Summary

	4 Tagging
	4.1 Introduction
	4.2 Corpus data
	4.3 Preprocessing
	4.4 Syntactic tagging
	4.5 Semantic tagging

	5 Memory based learning
	5.1 Introduction
	5.2 About MBL
	5.2.1 Basics
	5.2.2 Memory based learning in language engineering applications
	5.2.3 Supporting linguistic theories with memory learning results

	5.3 Data
	5.3.1 Encoding

	5.4 Tests
	5.5 Results
	5.5.1 Averages
	5.5.2 Weighting
	5.5.3 Confusion matrix
	5.5.4 Specific errors

	5.6 Summary

	6 Discussion and conclusion
	6.1 Discussion
	6.2 Further work
	6.3 Conclusion

	7 References
	7.1 Publications
	7.2 Web sites

